Machine-learning approach to the design of OSDAs for zeolite beta

We report a machine-learning strategy for design of organic structure directing agents (OSDAs) for zeolite beta. We use machine learning to replace a computationally expensive molecular dynamics evaluation of the stabilization energy of the OSDA inside zeolite beta with a neural network prediction....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-02, Vol.116 (9), p.3413-3418
Hauptverfasser: Daeyaert, Frits, Deem, Michael W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3418
container_issue 9
container_start_page 3413
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Daeyaert, Frits
Deem, Michael W.
description We report a machine-learning strategy for design of organic structure directing agents (OSDAs) for zeolite beta. We use machine learning to replace a computationally expensive molecular dynamics evaluation of the stabilization energy of the OSDA inside zeolite beta with a neural network prediction. We train the neural network on 4,781 candidate OSDAs, spanning a range of stabilization energies. We find that the stabilization energies predicted by the neural network are highly correlated with the molecular dynamics computations. We further find that the evolutionary design algorithm samples the space of chemically feasible OSDAs thoroughly. In total, we find 469 OSDAs with verified stabilization energies below −17 kJ/(mol Si), comparable to or better than known OSDAs for zeolite beta, and greatly expanding our previous list of 152 such predicted OSDAs. We expect that these OSDAs will lead to syntheses of zeolite beta.
doi_str_mv 10.1073/pnas.1818763116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6397530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26672082</jstor_id><sourcerecordid>26672082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-4bb8a32a689e255c4520c10e91cbab364b14dcf0f16a410767f63c4c37e06b0a3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw5gRa0QuXbWdsr72-IEUtX1JRD8DZ8jrexNHGXmwHCf56HKWEj9NIM7954-dHyHOESwTJruZg8iX22EvBEMUDskBQ2Aqu4CFZAFDZ9pzyM_Ik5y0AqK6Hx-SM1V1GFSzI8pOxGx9cOzmTgg_rxsxzirXZlNiUjWtWLvt1aOLY3H2-WeZmjKn56eLki2sGV8xT8mg0U3bP7us5-fru7ZfrD-3t3fuP18vb1nZMlJYPQ28YNaJXjnad5R0Fi-AU2sEMTPAB-cqOMKIwvHoTchTMcsukAzGAYefkzVF33g87t7IulGQmPSe_M-mHjsbrfyfBb_Q6fteCKdkxqAKvjgIxF6-zrQbsxsYQnC0aBTKUskKv76-k-G3vctE7n62bJhNc3GdNsReCouKiohf_odu4T6H-wYGSiKrDw9WrI2VTzDm58fRiBH3IUB8y1H8yrBsv_zZ64n-HVoEXR2CbS0ynORVCUugp-wXKIZ_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187119510</pqid></control><display><type>article</type><title>Machine-learning approach to the design of OSDAs for zeolite beta</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Daeyaert, Frits ; Deem, Michael W.</creator><creatorcontrib>Daeyaert, Frits ; Deem, Michael W. ; Rice Univ., Houston, TX (United States)</creatorcontrib><description>We report a machine-learning strategy for design of organic structure directing agents (OSDAs) for zeolite beta. We use machine learning to replace a computationally expensive molecular dynamics evaluation of the stabilization energy of the OSDA inside zeolite beta with a neural network prediction. We train the neural network on 4,781 candidate OSDAs, spanning a range of stabilization energies. We find that the stabilization energies predicted by the neural network are highly correlated with the molecular dynamics computations. We further find that the evolutionary design algorithm samples the space of chemically feasible OSDAs thoroughly. In total, we find 469 OSDAs with verified stabilization energies below −17 kJ/(mol Si), comparable to or better than known OSDAs for zeolite beta, and greatly expanding our previous list of 152 such predicted OSDAs. We expect that these OSDAs will lead to syntheses of zeolite beta.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1818763116</identifier><identifier>PMID: 30733290</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Design ; ENGINEERING ; Evolutionary algorithms ; Learning algorithms ; Machine learning ; Molecular dynamics ; neural network ; Neural networks ; Organic chemistry ; OSDA ; Physical Sciences ; Predictions ; science &amp; technology - other topics ; Stabilization ; zeolite beta ; Zeolites</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-02, Vol.116 (9), p.3413-3418</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 26, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-4bb8a32a689e255c4520c10e91cbab364b14dcf0f16a410767f63c4c37e06b0a3</citedby><cites>FETCH-LOGICAL-c536t-4bb8a32a689e255c4520c10e91cbab364b14dcf0f16a410767f63c4c37e06b0a3</cites><orcidid>0000-0002-3896-4003 ; 0000-0002-4298-3450 ; 0000000238964003 ; 0000000242983450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26672082$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26672082$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30733290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1613177$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Daeyaert, Frits</creatorcontrib><creatorcontrib>Deem, Michael W.</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><title>Machine-learning approach to the design of OSDAs for zeolite beta</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We report a machine-learning strategy for design of organic structure directing agents (OSDAs) for zeolite beta. We use machine learning to replace a computationally expensive molecular dynamics evaluation of the stabilization energy of the OSDA inside zeolite beta with a neural network prediction. We train the neural network on 4,781 candidate OSDAs, spanning a range of stabilization energies. We find that the stabilization energies predicted by the neural network are highly correlated with the molecular dynamics computations. We further find that the evolutionary design algorithm samples the space of chemically feasible OSDAs thoroughly. In total, we find 469 OSDAs with verified stabilization energies below −17 kJ/(mol Si), comparable to or better than known OSDAs for zeolite beta, and greatly expanding our previous list of 152 such predicted OSDAs. We expect that these OSDAs will lead to syntheses of zeolite beta.</description><subject>Design</subject><subject>ENGINEERING</subject><subject>Evolutionary algorithms</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Molecular dynamics</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>OSDA</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>science &amp; technology - other topics</subject><subject>Stabilization</subject><subject>zeolite beta</subject><subject>Zeolites</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vEzEQxS0EoqFw5gRa0QuXbWdsr72-IEUtX1JRD8DZ8jrexNHGXmwHCf56HKWEj9NIM7954-dHyHOESwTJruZg8iX22EvBEMUDskBQ2Aqu4CFZAFDZ9pzyM_Ik5y0AqK6Hx-SM1V1GFSzI8pOxGx9cOzmTgg_rxsxzirXZlNiUjWtWLvt1aOLY3H2-WeZmjKn56eLki2sGV8xT8mg0U3bP7us5-fru7ZfrD-3t3fuP18vb1nZMlJYPQ28YNaJXjnad5R0Fi-AU2sEMTPAB-cqOMKIwvHoTchTMcsukAzGAYefkzVF33g87t7IulGQmPSe_M-mHjsbrfyfBb_Q6fteCKdkxqAKvjgIxF6-zrQbsxsYQnC0aBTKUskKv76-k-G3vctE7n62bJhNc3GdNsReCouKiohf_odu4T6H-wYGSiKrDw9WrI2VTzDm58fRiBH3IUB8y1H8yrBsv_zZ64n-HVoEXR2CbS0ynORVCUugp-wXKIZ_4</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Daeyaert, Frits</creator><creator>Deem, Michael W.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3896-4003</orcidid><orcidid>https://orcid.org/0000-0002-4298-3450</orcidid><orcidid>https://orcid.org/0000000238964003</orcidid><orcidid>https://orcid.org/0000000242983450</orcidid></search><sort><creationdate>20190226</creationdate><title>Machine-learning approach to the design of OSDAs for zeolite beta</title><author>Daeyaert, Frits ; Deem, Michael W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-4bb8a32a689e255c4520c10e91cbab364b14dcf0f16a410767f63c4c37e06b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Design</topic><topic>ENGINEERING</topic><topic>Evolutionary algorithms</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Molecular dynamics</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>OSDA</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>science &amp; technology - other topics</topic><topic>Stabilization</topic><topic>zeolite beta</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daeyaert, Frits</creatorcontrib><creatorcontrib>Deem, Michael W.</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daeyaert, Frits</au><au>Deem, Michael W.</au><aucorp>Rice Univ., Houston, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-learning approach to the design of OSDAs for zeolite beta</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>116</volume><issue>9</issue><spage>3413</spage><epage>3418</epage><pages>3413-3418</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We report a machine-learning strategy for design of organic structure directing agents (OSDAs) for zeolite beta. We use machine learning to replace a computationally expensive molecular dynamics evaluation of the stabilization energy of the OSDA inside zeolite beta with a neural network prediction. We train the neural network on 4,781 candidate OSDAs, spanning a range of stabilization energies. We find that the stabilization energies predicted by the neural network are highly correlated with the molecular dynamics computations. We further find that the evolutionary design algorithm samples the space of chemically feasible OSDAs thoroughly. In total, we find 469 OSDAs with verified stabilization energies below −17 kJ/(mol Si), comparable to or better than known OSDAs for zeolite beta, and greatly expanding our previous list of 152 such predicted OSDAs. We expect that these OSDAs will lead to syntheses of zeolite beta.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30733290</pmid><doi>10.1073/pnas.1818763116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3896-4003</orcidid><orcidid>https://orcid.org/0000-0002-4298-3450</orcidid><orcidid>https://orcid.org/0000000238964003</orcidid><orcidid>https://orcid.org/0000000242983450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-02, Vol.116 (9), p.3413-3418
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6397530
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Design
ENGINEERING
Evolutionary algorithms
Learning algorithms
Machine learning
Molecular dynamics
neural network
Neural networks
Organic chemistry
OSDA
Physical Sciences
Predictions
science & technology - other topics
Stabilization
zeolite beta
Zeolites
title Machine-learning approach to the design of OSDAs for zeolite beta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-learning%20approach%20to%20the%20design%20of%20OSDAs%20for%20zeolite%20beta&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Daeyaert,%20Frits&rft.aucorp=Rice%20Univ.,%20Houston,%20TX%20(United%20States)&rft.date=2019-02-26&rft.volume=116&rft.issue=9&rft.spage=3413&rft.epage=3418&rft.pages=3413-3418&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1818763116&rft_dat=%3Cjstor_pubme%3E26672082%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187119510&rft_id=info:pmid/30733290&rft_jstor_id=26672082&rfr_iscdi=true