Endophilin‐A regulates presynaptic Ca2+ influx and synaptic vesicle recycling in auditory hair cells

Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins‐A1‐3, endocytic adaptors with curvature‐sensing and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2019-03, Vol.38 (5), p.n/a
Hauptverfasser: Kroll, Jana, Jaime Tobón, Lina M, Vogl, Christian, Neef, Jakob, Kondratiuk, Ilona, König, Melanie, Strenzke, Nicola, Wichmann, Carolin, Milosevic, Ira, Moser, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title The EMBO journal
container_volume 38
creator Kroll, Jana
Jaime Tobón, Lina M
Vogl, Christian
Neef, Jakob
Kondratiuk, Ilona
König, Melanie
Strenzke, Nicola
Wichmann, Carolin
Milosevic, Ira
Moser, Tobias
description Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins‐A1‐3, endocytic adaptors with curvature‐sensing and curvature‐generating properties, in mouse IHCs. Single‐cell RT–PCR indicated the expression of endophilins‐A1‐3 in IHCs, and immunoblotting confirmed the presence of endophilin‐A1 and endophilin‐A2 in the cochlea. Patch‐clamp recordings from endophilin‐A‐deficient IHCs revealed a reduction of Ca 2+ influx and exocytosis, which we attribute to a decreased abundance of presynaptic Ca 2+ channels and impaired SV replenishment. Slow endocytic membrane retrieval, thought to reflect clathrin‐mediated endocytosis, was impaired. Otoferlin, essential for IHC exocytosis, co‐immunoprecipitated with purified endophilin‐A1 protein, suggestive of a molecular interaction that might aid exocytosis–endocytosis coupling. Electron microscopy revealed lower SV numbers, but an increased occurrence of coated structures and endosome‐like vacuoles at IHC active zones. In summary, endophilins regulate Ca 2+ influx and promote SV recycling in IHCs, likely via coupling exocytosis to endocytosis, and contributing to membrane retrieval and SV reformation. Synopsis Using a multidisciplinary approach, we show that endophilin‐A positively regulates presynaptic Ca 2+ influx and interacts with otoferlin. Moreover, endophilin‐A supports vesicle endocytosis and clathrin‐dependent vesicle reformation at ribbon synapses of murine inner hair cells. Absence of endophilin‐A leads to reduced presynaptic Ca 2+ channel cluster size and attenuated Ca 2+ influx at inner hair cell ribbon synapses. Otoferlin physically interacts with endophilin; loss of endophilin‐A1 and ‐A3 leads to a reduction in otoferlin levels of ˜25%. The number of cytosolic and ribbon‐associated SVs is decreased in mutants missing several endophilin‐A genes; consequently, IHC sustained exocytosis was found to be reduced. Absence of endophilin‐A leads to accumulations of endosome‐like vacuoles and clathrin‐coated organelles; the severity of the phenotype depends on the number of missing endophilin alleles. Graphical Abstract Endophilins regulate Ca 2+ channel abundance, Ca 2+ influx and synaptic vesicle recycling in inner hair cells by coupling exocytosis to endocytosis, contributing to membrane retrieval and synaptic vesicle reformati
doi_str_mv 10.15252/embj.2018100116
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6396150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187535297</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2966-c44cd739c1840d3e9cdebdf9d69be29911515052a528dc340c170658431ce5863</originalsourceid><addsrcrecordid>eNp1kU9rFDEYh4NY7Fq9exzwIsi0eZNJJgER2mX9Uype9ByySXY3SzYzJjPVufkR_Ix-ErNu6VLBUwjv83uSlx9CLwCfAyOMXLjdcntOMAjAGIA_QjNoOK4JbtljNMOEQ92AkKfoac5bjDETLTxBpxS3lJKGztBqEW3Xb3zw8ffPX5dVcusx6MHlqk8uT1H3gzfVXJPXlY-rMP6odLTV_eDWZW-CKzEzmeJYF6rSo_VDl6Zqo32qjAshP0MnKx2ye353nqGv7xZf5h_qm8_vP84vb-qeSM5r0zTGtlQaEA221Elj3dKupOVy6YiUAAwYZkQzIqyhDTbQYs5EQ8E4Jjg9Q28P3n5c7pw1Lg5JB9Unv9NpUp326uEk-o1ad7eKU8mLughe3QlS9210eVA7n_cr6Oi6MSsComWUEdkW9OU_6LYbUyzr7SkuuSBcFOrNgfrug5vufwJY_W1Q7RtUxwbV4tPV9fFa4nCI55KMa5eOj_xPQf8A1dyiLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186968268</pqid></control><display><type>article</type><title>Endophilin‐A regulates presynaptic Ca2+ influx and synaptic vesicle recycling in auditory hair cells</title><source>Springer Nature OA Free Journals</source><creator>Kroll, Jana ; Jaime Tobón, Lina M ; Vogl, Christian ; Neef, Jakob ; Kondratiuk, Ilona ; König, Melanie ; Strenzke, Nicola ; Wichmann, Carolin ; Milosevic, Ira ; Moser, Tobias</creator><creatorcontrib>Kroll, Jana ; Jaime Tobón, Lina M ; Vogl, Christian ; Neef, Jakob ; Kondratiuk, Ilona ; König, Melanie ; Strenzke, Nicola ; Wichmann, Carolin ; Milosevic, Ira ; Moser, Tobias</creatorcontrib><description>Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins‐A1‐3, endocytic adaptors with curvature‐sensing and curvature‐generating properties, in mouse IHCs. Single‐cell RT–PCR indicated the expression of endophilins‐A1‐3 in IHCs, and immunoblotting confirmed the presence of endophilin‐A1 and endophilin‐A2 in the cochlea. Patch‐clamp recordings from endophilin‐A‐deficient IHCs revealed a reduction of Ca 2+ influx and exocytosis, which we attribute to a decreased abundance of presynaptic Ca 2+ channels and impaired SV replenishment. Slow endocytic membrane retrieval, thought to reflect clathrin‐mediated endocytosis, was impaired. Otoferlin, essential for IHC exocytosis, co‐immunoprecipitated with purified endophilin‐A1 protein, suggestive of a molecular interaction that might aid exocytosis–endocytosis coupling. Electron microscopy revealed lower SV numbers, but an increased occurrence of coated structures and endosome‐like vacuoles at IHC active zones. In summary, endophilins regulate Ca 2+ influx and promote SV recycling in IHCs, likely via coupling exocytosis to endocytosis, and contributing to membrane retrieval and SV reformation. Synopsis Using a multidisciplinary approach, we show that endophilin‐A positively regulates presynaptic Ca 2+ influx and interacts with otoferlin. Moreover, endophilin‐A supports vesicle endocytosis and clathrin‐dependent vesicle reformation at ribbon synapses of murine inner hair cells. Absence of endophilin‐A leads to reduced presynaptic Ca 2+ channel cluster size and attenuated Ca 2+ influx at inner hair cell ribbon synapses. Otoferlin physically interacts with endophilin; loss of endophilin‐A1 and ‐A3 leads to a reduction in otoferlin levels of ˜25%. The number of cytosolic and ribbon‐associated SVs is decreased in mutants missing several endophilin‐A genes; consequently, IHC sustained exocytosis was found to be reduced. Absence of endophilin‐A leads to accumulations of endosome‐like vacuoles and clathrin‐coated organelles; the severity of the phenotype depends on the number of missing endophilin alleles. Graphical Abstract Endophilins regulate Ca 2+ channel abundance, Ca 2+ influx and synaptic vesicle recycling in inner hair cells by coupling exocytosis to endocytosis, contributing to membrane retrieval and synaptic vesicle reformation.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2018100116</identifier><identifier>PMID: 30733243</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>A1 protein ; Adapters ; Calcium channels ; Calcium influx ; Calcium ions ; Clathrin ; Cochlea ; Coupling (molecular) ; Curvature ; Electron microscopy ; EMBO27 ; Endocytosis ; Exocytosis ; Hair ; Hair cells ; Immunoblotting ; membrane capacitance ; Molecular interactions ; Neurotransmission ; Organelles ; Phenotypes ; Protein turnover ; Proteins ; Reduction ; Replenishment ; Retrieval ; ribbon synapse ; super‐resolution microscopy ; Synapses ; Synaptic ribbons ; Vacuoles</subject><ispartof>The EMBO journal, 2019-03, Vol.38 (5), p.n/a</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors</rights><rights>2019 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4432-2733 ; 0000-0001-7145-0533 ; 0000-0003-1673-1046 ; 0000-0001-8868-8716 ; 0000-0002-7740-8923 ; 0000-0001-6440-3763 ; 0000-0002-6752-7750 ; 0000-0003-4243-4088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396150/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396150/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.2018100116$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Kroll, Jana</creatorcontrib><creatorcontrib>Jaime Tobón, Lina M</creatorcontrib><creatorcontrib>Vogl, Christian</creatorcontrib><creatorcontrib>Neef, Jakob</creatorcontrib><creatorcontrib>Kondratiuk, Ilona</creatorcontrib><creatorcontrib>König, Melanie</creatorcontrib><creatorcontrib>Strenzke, Nicola</creatorcontrib><creatorcontrib>Wichmann, Carolin</creatorcontrib><creatorcontrib>Milosevic, Ira</creatorcontrib><creatorcontrib>Moser, Tobias</creatorcontrib><title>Endophilin‐A regulates presynaptic Ca2+ influx and synaptic vesicle recycling in auditory hair cells</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><description>Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins‐A1‐3, endocytic adaptors with curvature‐sensing and curvature‐generating properties, in mouse IHCs. Single‐cell RT–PCR indicated the expression of endophilins‐A1‐3 in IHCs, and immunoblotting confirmed the presence of endophilin‐A1 and endophilin‐A2 in the cochlea. Patch‐clamp recordings from endophilin‐A‐deficient IHCs revealed a reduction of Ca 2+ influx and exocytosis, which we attribute to a decreased abundance of presynaptic Ca 2+ channels and impaired SV replenishment. Slow endocytic membrane retrieval, thought to reflect clathrin‐mediated endocytosis, was impaired. Otoferlin, essential for IHC exocytosis, co‐immunoprecipitated with purified endophilin‐A1 protein, suggestive of a molecular interaction that might aid exocytosis–endocytosis coupling. Electron microscopy revealed lower SV numbers, but an increased occurrence of coated structures and endosome‐like vacuoles at IHC active zones. In summary, endophilins regulate Ca 2+ influx and promote SV recycling in IHCs, likely via coupling exocytosis to endocytosis, and contributing to membrane retrieval and SV reformation. Synopsis Using a multidisciplinary approach, we show that endophilin‐A positively regulates presynaptic Ca 2+ influx and interacts with otoferlin. Moreover, endophilin‐A supports vesicle endocytosis and clathrin‐dependent vesicle reformation at ribbon synapses of murine inner hair cells. Absence of endophilin‐A leads to reduced presynaptic Ca 2+ channel cluster size and attenuated Ca 2+ influx at inner hair cell ribbon synapses. Otoferlin physically interacts with endophilin; loss of endophilin‐A1 and ‐A3 leads to a reduction in otoferlin levels of ˜25%. The number of cytosolic and ribbon‐associated SVs is decreased in mutants missing several endophilin‐A genes; consequently, IHC sustained exocytosis was found to be reduced. Absence of endophilin‐A leads to accumulations of endosome‐like vacuoles and clathrin‐coated organelles; the severity of the phenotype depends on the number of missing endophilin alleles. Graphical Abstract Endophilins regulate Ca 2+ channel abundance, Ca 2+ influx and synaptic vesicle recycling in inner hair cells by coupling exocytosis to endocytosis, contributing to membrane retrieval and synaptic vesicle reformation.</description><subject>A1 protein</subject><subject>Adapters</subject><subject>Calcium channels</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Clathrin</subject><subject>Cochlea</subject><subject>Coupling (molecular)</subject><subject>Curvature</subject><subject>Electron microscopy</subject><subject>EMBO27</subject><subject>Endocytosis</subject><subject>Exocytosis</subject><subject>Hair</subject><subject>Hair cells</subject><subject>Immunoblotting</subject><subject>membrane capacitance</subject><subject>Molecular interactions</subject><subject>Neurotransmission</subject><subject>Organelles</subject><subject>Phenotypes</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Reduction</subject><subject>Replenishment</subject><subject>Retrieval</subject><subject>ribbon synapse</subject><subject>super‐resolution microscopy</subject><subject>Synapses</subject><subject>Synaptic ribbons</subject><subject>Vacuoles</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9rFDEYh4NY7Fq9exzwIsi0eZNJJgER2mX9Uype9ByySXY3SzYzJjPVufkR_Ix-ErNu6VLBUwjv83uSlx9CLwCfAyOMXLjdcntOMAjAGIA_QjNoOK4JbtljNMOEQ92AkKfoac5bjDETLTxBpxS3lJKGztBqEW3Xb3zw8ffPX5dVcusx6MHlqk8uT1H3gzfVXJPXlY-rMP6odLTV_eDWZW-CKzEzmeJYF6rSo_VDl6Zqo32qjAshP0MnKx2ye353nqGv7xZf5h_qm8_vP84vb-qeSM5r0zTGtlQaEA221Elj3dKupOVy6YiUAAwYZkQzIqyhDTbQYs5EQ8E4Jjg9Q28P3n5c7pw1Lg5JB9Unv9NpUp326uEk-o1ad7eKU8mLughe3QlS9210eVA7n_cr6Oi6MSsComWUEdkW9OU_6LYbUyzr7SkuuSBcFOrNgfrug5vufwJY_W1Q7RtUxwbV4tPV9fFa4nCI55KMa5eOj_xPQf8A1dyiLA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Kroll, Jana</creator><creator>Jaime Tobón, Lina M</creator><creator>Vogl, Christian</creator><creator>Neef, Jakob</creator><creator>Kondratiuk, Ilona</creator><creator>König, Melanie</creator><creator>Strenzke, Nicola</creator><creator>Wichmann, Carolin</creator><creator>Milosevic, Ira</creator><creator>Moser, Tobias</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4432-2733</orcidid><orcidid>https://orcid.org/0000-0001-7145-0533</orcidid><orcidid>https://orcid.org/0000-0003-1673-1046</orcidid><orcidid>https://orcid.org/0000-0001-8868-8716</orcidid><orcidid>https://orcid.org/0000-0002-7740-8923</orcidid><orcidid>https://orcid.org/0000-0001-6440-3763</orcidid><orcidid>https://orcid.org/0000-0002-6752-7750</orcidid><orcidid>https://orcid.org/0000-0003-4243-4088</orcidid></search><sort><creationdate>20190301</creationdate><title>Endophilin‐A regulates presynaptic Ca2+ influx and synaptic vesicle recycling in auditory hair cells</title><author>Kroll, Jana ; Jaime Tobón, Lina M ; Vogl, Christian ; Neef, Jakob ; Kondratiuk, Ilona ; König, Melanie ; Strenzke, Nicola ; Wichmann, Carolin ; Milosevic, Ira ; Moser, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2966-c44cd739c1840d3e9cdebdf9d69be29911515052a528dc340c170658431ce5863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A1 protein</topic><topic>Adapters</topic><topic>Calcium channels</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Clathrin</topic><topic>Cochlea</topic><topic>Coupling (molecular)</topic><topic>Curvature</topic><topic>Electron microscopy</topic><topic>EMBO27</topic><topic>Endocytosis</topic><topic>Exocytosis</topic><topic>Hair</topic><topic>Hair cells</topic><topic>Immunoblotting</topic><topic>membrane capacitance</topic><topic>Molecular interactions</topic><topic>Neurotransmission</topic><topic>Organelles</topic><topic>Phenotypes</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Reduction</topic><topic>Replenishment</topic><topic>Retrieval</topic><topic>ribbon synapse</topic><topic>super‐resolution microscopy</topic><topic>Synapses</topic><topic>Synaptic ribbons</topic><topic>Vacuoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kroll, Jana</creatorcontrib><creatorcontrib>Jaime Tobón, Lina M</creatorcontrib><creatorcontrib>Vogl, Christian</creatorcontrib><creatorcontrib>Neef, Jakob</creatorcontrib><creatorcontrib>Kondratiuk, Ilona</creatorcontrib><creatorcontrib>König, Melanie</creatorcontrib><creatorcontrib>Strenzke, Nicola</creatorcontrib><creatorcontrib>Wichmann, Carolin</creatorcontrib><creatorcontrib>Milosevic, Ira</creatorcontrib><creatorcontrib>Moser, Tobias</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kroll, Jana</au><au>Jaime Tobón, Lina M</au><au>Vogl, Christian</au><au>Neef, Jakob</au><au>Kondratiuk, Ilona</au><au>König, Melanie</au><au>Strenzke, Nicola</au><au>Wichmann, Carolin</au><au>Milosevic, Ira</au><au>Moser, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endophilin‐A regulates presynaptic Ca2+ influx and synaptic vesicle recycling in auditory hair cells</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>38</volume><issue>5</issue><epage>n/a</epage><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins‐A1‐3, endocytic adaptors with curvature‐sensing and curvature‐generating properties, in mouse IHCs. Single‐cell RT–PCR indicated the expression of endophilins‐A1‐3 in IHCs, and immunoblotting confirmed the presence of endophilin‐A1 and endophilin‐A2 in the cochlea. Patch‐clamp recordings from endophilin‐A‐deficient IHCs revealed a reduction of Ca 2+ influx and exocytosis, which we attribute to a decreased abundance of presynaptic Ca 2+ channels and impaired SV replenishment. Slow endocytic membrane retrieval, thought to reflect clathrin‐mediated endocytosis, was impaired. Otoferlin, essential for IHC exocytosis, co‐immunoprecipitated with purified endophilin‐A1 protein, suggestive of a molecular interaction that might aid exocytosis–endocytosis coupling. Electron microscopy revealed lower SV numbers, but an increased occurrence of coated structures and endosome‐like vacuoles at IHC active zones. In summary, endophilins regulate Ca 2+ influx and promote SV recycling in IHCs, likely via coupling exocytosis to endocytosis, and contributing to membrane retrieval and SV reformation. Synopsis Using a multidisciplinary approach, we show that endophilin‐A positively regulates presynaptic Ca 2+ influx and interacts with otoferlin. Moreover, endophilin‐A supports vesicle endocytosis and clathrin‐dependent vesicle reformation at ribbon synapses of murine inner hair cells. Absence of endophilin‐A leads to reduced presynaptic Ca 2+ channel cluster size and attenuated Ca 2+ influx at inner hair cell ribbon synapses. Otoferlin physically interacts with endophilin; loss of endophilin‐A1 and ‐A3 leads to a reduction in otoferlin levels of ˜25%. The number of cytosolic and ribbon‐associated SVs is decreased in mutants missing several endophilin‐A genes; consequently, IHC sustained exocytosis was found to be reduced. Absence of endophilin‐A leads to accumulations of endosome‐like vacuoles and clathrin‐coated organelles; the severity of the phenotype depends on the number of missing endophilin alleles. Graphical Abstract Endophilins regulate Ca 2+ channel abundance, Ca 2+ influx and synaptic vesicle recycling in inner hair cells by coupling exocytosis to endocytosis, contributing to membrane retrieval and synaptic vesicle reformation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30733243</pmid><doi>10.15252/embj.2018100116</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4432-2733</orcidid><orcidid>https://orcid.org/0000-0001-7145-0533</orcidid><orcidid>https://orcid.org/0000-0003-1673-1046</orcidid><orcidid>https://orcid.org/0000-0001-8868-8716</orcidid><orcidid>https://orcid.org/0000-0002-7740-8923</orcidid><orcidid>https://orcid.org/0000-0001-6440-3763</orcidid><orcidid>https://orcid.org/0000-0002-6752-7750</orcidid><orcidid>https://orcid.org/0000-0003-4243-4088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2019-03, Vol.38 (5), p.n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6396150
source Springer Nature OA Free Journals
subjects A1 protein
Adapters
Calcium channels
Calcium influx
Calcium ions
Clathrin
Cochlea
Coupling (molecular)
Curvature
Electron microscopy
EMBO27
Endocytosis
Exocytosis
Hair
Hair cells
Immunoblotting
membrane capacitance
Molecular interactions
Neurotransmission
Organelles
Phenotypes
Protein turnover
Proteins
Reduction
Replenishment
Retrieval
ribbon synapse
super‐resolution microscopy
Synapses
Synaptic ribbons
Vacuoles
title Endophilin‐A regulates presynaptic Ca2+ influx and synaptic vesicle recycling in auditory hair cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endophilin%E2%80%90A%20regulates%20presynaptic%20Ca2+%20influx%20and%20synaptic%20vesicle%20recycling%20in%20auditory%20hair%20cells&rft.jtitle=The%20EMBO%20journal&rft.au=Kroll,%20Jana&rft.date=2019-03-01&rft.volume=38&rft.issue=5&rft.epage=n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2018100116&rft_dat=%3Cproquest_C6C%3E2187535297%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186968268&rft_id=info:pmid/30733243&rfr_iscdi=true