Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options

The discovery of pathogenetic mechanisms is essential to identify new therapeutic approaches in Amyotrophic Lateral Sclerosis (ALS). Here we investigated the role of the most important ion channels in skeletal muscle of an ALS animal model (MLC/SOD1 G93A ) carrying a mutated SOD1 exclusively in this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-02, Vol.9 (1), p.3185-3185, Article 3185
Hauptverfasser: Camerino, Giulia Maria, Fonzino, Adriano, Conte, Elena, De Bellis, Michela, Mele, Antonietta, Liantonio, Antonella, Tricarico, Domenico, Tarantino, Nancy, Dobrowolny, Gabriella, Musarò, Antonio, Desaphy, Jean-Francois, De Luca, Annamaria, Pierno, Sabata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3185
container_issue 1
container_start_page 3185
container_title Scientific reports
container_volume 9
creator Camerino, Giulia Maria
Fonzino, Adriano
Conte, Elena
De Bellis, Michela
Mele, Antonietta
Liantonio, Antonella
Tricarico, Domenico
Tarantino, Nancy
Dobrowolny, Gabriella
Musarò, Antonio
Desaphy, Jean-Francois
De Luca, Annamaria
Pierno, Sabata
description The discovery of pathogenetic mechanisms is essential to identify new therapeutic approaches in Amyotrophic Lateral Sclerosis (ALS). Here we investigated the role of the most important ion channels in skeletal muscle of an ALS animal model (MLC/SOD1 G93A ) carrying a mutated SOD1 exclusively in this tissue, avoiding motor-neuron involvement. Ion channels are fundamental proteins for muscle function, and also to sustain neuromuscular junction and nerve integrity. By a multivariate statistical analysis, using machine learning algorithms, we identified the discriminant genes in MLC/SOD1 G93A mice. Surprisingly, the expression of ClC-1 chloride channel, present only in skeletal muscle, was reduced. Also, the expression of Protein Kinase-C, known to control ClC-1 activity, was increased, causing its inhibition. The functional characterization confirmed the reduction of ClC-1 activity, leading to hyperexcitability and impaired relaxation. The increased expression of ion channel coupled AMPA-receptor may contribute to sustained depolarization and functional impairment. Also, the decreased expression of irisin, a muscle-secreted peptide protecting brain function, may disturb muscle-nerve connection. Interestingly, the in-vitro application of chelerythrine or acetazolamide, restored ClC-1 activity and sarcolemma hyperexcitability in these mice. These findings show that ion channel function impairment in skeletal muscle may lead to motor-neuron increased vulnerability, and opens the possibility to investigate on new compounds as promising therapy.
doi_str_mv 10.1038/s41598-019-39676-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6395744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187024328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f6f901106e2ad793af82647c4ecfcc2dab91602429fb419a2a57025312154cdf3</originalsourceid><addsrcrecordid>eNp9kc9vFCEUxydGY5vaf8CDIfHiZRQezA8uJs2mapM1HqpnwjKPHeosjMDU9OpfLuuutXqQC4T3ed8vj29VPWf0NaO8f5MEa2RfUyZrLtuurfmj6hSoaGrgAI8fnE-q85RuaFkNSMHk0-qE0561INhp9eNyWowbdHZ-S_KIZBV8jm6zZBc8CZZcf8UJs57IxyWZCclVuV6N2nucEsmBXOzuQo5hHp0ha50xFvS6gDEkl4jzJKGOZtxLefy-t4h6xiJvSJj3JulZ9cTqKeH5cT-rvry7_Lz6UK8_vb9aXaxrIzqRa9taSRmjLYIeOsm17aEVnRForDEw6I1kLQUB0m7KlBp001FoOAPWCDNYfla9PejOy2aHg8EyqJ7UHN1OxzsVtFN_V7wb1TbcqpbLphOiCLw6CsTwbcGU1c4lg9OkPYYlKWB9cRQc-oK-_Ae9CUv0ZbwjxRhAoeBAmfJbKaK9fwyjap-yOqSsSsrqV8qKl6YXD8e4b_mdaQH4AUil5LcY_3j_R_Yni2S0xg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187021122</pqid></control><display><type>article</type><title>Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Camerino, Giulia Maria ; Fonzino, Adriano ; Conte, Elena ; De Bellis, Michela ; Mele, Antonietta ; Liantonio, Antonella ; Tricarico, Domenico ; Tarantino, Nancy ; Dobrowolny, Gabriella ; Musarò, Antonio ; Desaphy, Jean-Francois ; De Luca, Annamaria ; Pierno, Sabata</creator><creatorcontrib>Camerino, Giulia Maria ; Fonzino, Adriano ; Conte, Elena ; De Bellis, Michela ; Mele, Antonietta ; Liantonio, Antonella ; Tricarico, Domenico ; Tarantino, Nancy ; Dobrowolny, Gabriella ; Musarò, Antonio ; Desaphy, Jean-Francois ; De Luca, Annamaria ; Pierno, Sabata</creatorcontrib><description>The discovery of pathogenetic mechanisms is essential to identify new therapeutic approaches in Amyotrophic Lateral Sclerosis (ALS). Here we investigated the role of the most important ion channels in skeletal muscle of an ALS animal model (MLC/SOD1 G93A ) carrying a mutated SOD1 exclusively in this tissue, avoiding motor-neuron involvement. Ion channels are fundamental proteins for muscle function, and also to sustain neuromuscular junction and nerve integrity. By a multivariate statistical analysis, using machine learning algorithms, we identified the discriminant genes in MLC/SOD1 G93A mice. Surprisingly, the expression of ClC-1 chloride channel, present only in skeletal muscle, was reduced. Also, the expression of Protein Kinase-C, known to control ClC-1 activity, was increased, causing its inhibition. The functional characterization confirmed the reduction of ClC-1 activity, leading to hyperexcitability and impaired relaxation. The increased expression of ion channel coupled AMPA-receptor may contribute to sustained depolarization and functional impairment. Also, the decreased expression of irisin, a muscle-secreted peptide protecting brain function, may disturb muscle-nerve connection. Interestingly, the in-vitro application of chelerythrine or acetazolamide, restored ClC-1 activity and sarcolemma hyperexcitability in these mice. These findings show that ion channel function impairment in skeletal muscle may lead to motor-neuron increased vulnerability, and opens the possibility to investigate on new compounds as promising therapy.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-39676-3</identifier><identifier>PMID: 30816241</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/34 ; 38/39 ; 631/154/436/108 ; 64/60 ; 692/53/2421 ; 692/699/375/374 ; 82/80 ; 9/74 ; Acetazolamide ; Amyotrophic lateral sclerosis ; Animal models ; Chelerythrine ; Depolarization ; Humanities and Social Sciences ; Ion channels ; Kinases ; Learning algorithms ; multidisciplinary ; Musculoskeletal system ; Protein kinase ; Sarcolemma ; Science ; Science (multidisciplinary) ; Skeletal muscle ; Statistical analysis ; Superoxide dismutase ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><ispartof>Scientific reports, 2019-02, Vol.9 (1), p.3185-3185, Article 3185</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f6f901106e2ad793af82647c4ecfcc2dab91602429fb419a2a57025312154cdf3</citedby><cites>FETCH-LOGICAL-c474t-f6f901106e2ad793af82647c4ecfcc2dab91602429fb419a2a57025312154cdf3</cites><orcidid>0000-0002-2944-9739 ; 0000-0001-8816-9369 ; 0000-0003-3121-2666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395744/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395744/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30816241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Camerino, Giulia Maria</creatorcontrib><creatorcontrib>Fonzino, Adriano</creatorcontrib><creatorcontrib>Conte, Elena</creatorcontrib><creatorcontrib>De Bellis, Michela</creatorcontrib><creatorcontrib>Mele, Antonietta</creatorcontrib><creatorcontrib>Liantonio, Antonella</creatorcontrib><creatorcontrib>Tricarico, Domenico</creatorcontrib><creatorcontrib>Tarantino, Nancy</creatorcontrib><creatorcontrib>Dobrowolny, Gabriella</creatorcontrib><creatorcontrib>Musarò, Antonio</creatorcontrib><creatorcontrib>Desaphy, Jean-Francois</creatorcontrib><creatorcontrib>De Luca, Annamaria</creatorcontrib><creatorcontrib>Pierno, Sabata</creatorcontrib><title>Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The discovery of pathogenetic mechanisms is essential to identify new therapeutic approaches in Amyotrophic Lateral Sclerosis (ALS). Here we investigated the role of the most important ion channels in skeletal muscle of an ALS animal model (MLC/SOD1 G93A ) carrying a mutated SOD1 exclusively in this tissue, avoiding motor-neuron involvement. Ion channels are fundamental proteins for muscle function, and also to sustain neuromuscular junction and nerve integrity. By a multivariate statistical analysis, using machine learning algorithms, we identified the discriminant genes in MLC/SOD1 G93A mice. Surprisingly, the expression of ClC-1 chloride channel, present only in skeletal muscle, was reduced. Also, the expression of Protein Kinase-C, known to control ClC-1 activity, was increased, causing its inhibition. The functional characterization confirmed the reduction of ClC-1 activity, leading to hyperexcitability and impaired relaxation. The increased expression of ion channel coupled AMPA-receptor may contribute to sustained depolarization and functional impairment. Also, the decreased expression of irisin, a muscle-secreted peptide protecting brain function, may disturb muscle-nerve connection. Interestingly, the in-vitro application of chelerythrine or acetazolamide, restored ClC-1 activity and sarcolemma hyperexcitability in these mice. These findings show that ion channel function impairment in skeletal muscle may lead to motor-neuron increased vulnerability, and opens the possibility to investigate on new compounds as promising therapy.</description><subject>14/34</subject><subject>38/39</subject><subject>631/154/436/108</subject><subject>64/60</subject><subject>692/53/2421</subject><subject>692/699/375/374</subject><subject>82/80</subject><subject>9/74</subject><subject>Acetazolamide</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Animal models</subject><subject>Chelerythrine</subject><subject>Depolarization</subject><subject>Humanities and Social Sciences</subject><subject>Ion channels</subject><subject>Kinases</subject><subject>Learning algorithms</subject><subject>multidisciplinary</subject><subject>Musculoskeletal system</subject><subject>Protein kinase</subject><subject>Sarcolemma</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skeletal muscle</subject><subject>Statistical analysis</subject><subject>Superoxide dismutase</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9vFCEUxydGY5vaf8CDIfHiZRQezA8uJs2mapM1HqpnwjKPHeosjMDU9OpfLuuutXqQC4T3ed8vj29VPWf0NaO8f5MEa2RfUyZrLtuurfmj6hSoaGrgAI8fnE-q85RuaFkNSMHk0-qE0561INhp9eNyWowbdHZ-S_KIZBV8jm6zZBc8CZZcf8UJs57IxyWZCclVuV6N2nucEsmBXOzuQo5hHp0ha50xFvS6gDEkl4jzJKGOZtxLefy-t4h6xiJvSJj3JulZ9cTqKeH5cT-rvry7_Lz6UK8_vb9aXaxrIzqRa9taSRmjLYIeOsm17aEVnRForDEw6I1kLQUB0m7KlBp001FoOAPWCDNYfla9PejOy2aHg8EyqJ7UHN1OxzsVtFN_V7wb1TbcqpbLphOiCLw6CsTwbcGU1c4lg9OkPYYlKWB9cRQc-oK-_Ae9CUv0ZbwjxRhAoeBAmfJbKaK9fwyjap-yOqSsSsrqV8qKl6YXD8e4b_mdaQH4AUil5LcY_3j_R_Yni2S0xg</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Camerino, Giulia Maria</creator><creator>Fonzino, Adriano</creator><creator>Conte, Elena</creator><creator>De Bellis, Michela</creator><creator>Mele, Antonietta</creator><creator>Liantonio, Antonella</creator><creator>Tricarico, Domenico</creator><creator>Tarantino, Nancy</creator><creator>Dobrowolny, Gabriella</creator><creator>Musarò, Antonio</creator><creator>Desaphy, Jean-Francois</creator><creator>De Luca, Annamaria</creator><creator>Pierno, Sabata</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2944-9739</orcidid><orcidid>https://orcid.org/0000-0001-8816-9369</orcidid><orcidid>https://orcid.org/0000-0003-3121-2666</orcidid></search><sort><creationdate>20190228</creationdate><title>Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options</title><author>Camerino, Giulia Maria ; Fonzino, Adriano ; Conte, Elena ; De Bellis, Michela ; Mele, Antonietta ; Liantonio, Antonella ; Tricarico, Domenico ; Tarantino, Nancy ; Dobrowolny, Gabriella ; Musarò, Antonio ; Desaphy, Jean-Francois ; De Luca, Annamaria ; Pierno, Sabata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f6f901106e2ad793af82647c4ecfcc2dab91602429fb419a2a57025312154cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/34</topic><topic>38/39</topic><topic>631/154/436/108</topic><topic>64/60</topic><topic>692/53/2421</topic><topic>692/699/375/374</topic><topic>82/80</topic><topic>9/74</topic><topic>Acetazolamide</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Animal models</topic><topic>Chelerythrine</topic><topic>Depolarization</topic><topic>Humanities and Social Sciences</topic><topic>Ion channels</topic><topic>Kinases</topic><topic>Learning algorithms</topic><topic>multidisciplinary</topic><topic>Musculoskeletal system</topic><topic>Protein kinase</topic><topic>Sarcolemma</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skeletal muscle</topic><topic>Statistical analysis</topic><topic>Superoxide dismutase</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camerino, Giulia Maria</creatorcontrib><creatorcontrib>Fonzino, Adriano</creatorcontrib><creatorcontrib>Conte, Elena</creatorcontrib><creatorcontrib>De Bellis, Michela</creatorcontrib><creatorcontrib>Mele, Antonietta</creatorcontrib><creatorcontrib>Liantonio, Antonella</creatorcontrib><creatorcontrib>Tricarico, Domenico</creatorcontrib><creatorcontrib>Tarantino, Nancy</creatorcontrib><creatorcontrib>Dobrowolny, Gabriella</creatorcontrib><creatorcontrib>Musarò, Antonio</creatorcontrib><creatorcontrib>Desaphy, Jean-Francois</creatorcontrib><creatorcontrib>De Luca, Annamaria</creatorcontrib><creatorcontrib>Pierno, Sabata</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camerino, Giulia Maria</au><au>Fonzino, Adriano</au><au>Conte, Elena</au><au>De Bellis, Michela</au><au>Mele, Antonietta</au><au>Liantonio, Antonella</au><au>Tricarico, Domenico</au><au>Tarantino, Nancy</au><au>Dobrowolny, Gabriella</au><au>Musarò, Antonio</au><au>Desaphy, Jean-Francois</au><au>De Luca, Annamaria</au><au>Pierno, Sabata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>3185</spage><epage>3185</epage><pages>3185-3185</pages><artnum>3185</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The discovery of pathogenetic mechanisms is essential to identify new therapeutic approaches in Amyotrophic Lateral Sclerosis (ALS). Here we investigated the role of the most important ion channels in skeletal muscle of an ALS animal model (MLC/SOD1 G93A ) carrying a mutated SOD1 exclusively in this tissue, avoiding motor-neuron involvement. Ion channels are fundamental proteins for muscle function, and also to sustain neuromuscular junction and nerve integrity. By a multivariate statistical analysis, using machine learning algorithms, we identified the discriminant genes in MLC/SOD1 G93A mice. Surprisingly, the expression of ClC-1 chloride channel, present only in skeletal muscle, was reduced. Also, the expression of Protein Kinase-C, known to control ClC-1 activity, was increased, causing its inhibition. The functional characterization confirmed the reduction of ClC-1 activity, leading to hyperexcitability and impaired relaxation. The increased expression of ion channel coupled AMPA-receptor may contribute to sustained depolarization and functional impairment. Also, the decreased expression of irisin, a muscle-secreted peptide protecting brain function, may disturb muscle-nerve connection. Interestingly, the in-vitro application of chelerythrine or acetazolamide, restored ClC-1 activity and sarcolemma hyperexcitability in these mice. These findings show that ion channel function impairment in skeletal muscle may lead to motor-neuron increased vulnerability, and opens the possibility to investigate on new compounds as promising therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30816241</pmid><doi>10.1038/s41598-019-39676-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2944-9739</orcidid><orcidid>https://orcid.org/0000-0001-8816-9369</orcidid><orcidid>https://orcid.org/0000-0003-3121-2666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-02, Vol.9 (1), p.3185-3185, Article 3185
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6395744
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 14/34
38/39
631/154/436/108
64/60
692/53/2421
692/699/375/374
82/80
9/74
Acetazolamide
Amyotrophic lateral sclerosis
Animal models
Chelerythrine
Depolarization
Humanities and Social Sciences
Ion channels
Kinases
Learning algorithms
multidisciplinary
Musculoskeletal system
Protein kinase
Sarcolemma
Science
Science (multidisciplinary)
Skeletal muscle
Statistical analysis
Superoxide dismutase
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
title Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Contribution%20of%20Skeletal%20Muscle%20Ion%20Channels%20to%20Amyotrophic%20Lateral%20Sclerosis%20in%20search%20of%20new%20therapeutic%20options&rft.jtitle=Scientific%20reports&rft.au=Camerino,%20Giulia%20Maria&rft.date=2019-02-28&rft.volume=9&rft.issue=1&rft.spage=3185&rft.epage=3185&rft.pages=3185-3185&rft.artnum=3185&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-39676-3&rft_dat=%3Cproquest_pubme%3E2187024328%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187021122&rft_id=info:pmid/30816241&rfr_iscdi=true