ENLIVE: An Efficient Nonlinear Method for Calibrationless and Robust Parallel Imaging
Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging technique which simultaneously estimates coil profiles...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-02, Vol.9 (1), p.3034-3034, Article 3034 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3034 |
---|---|
container_issue | 1 |
container_start_page | 3034 |
container_title | Scientific reports |
container_volume | 9 |
creator | Holme, H. Christian M. Rosenzweig, Sebastian Ong, Frank Wilke, Robin N. Lustig, Michael Uecker, Martin |
description | Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging technique which simultaneously estimates coil profiles and image content in a relaxed forward model. Our method is robust against a wide class of data inconsistencies, minimizes imaging artifacts and is comparably fast, combining important advantages of many conceptually different state-of-the-art parallel imaging approaches. Depending on the experimental setting, data can be undersampled well below the Nyquist limit. Here, even high acceleration factors yield excellent imaging results while being robust to noise and the occurrence of phase singularities in the image domain, as we show on different data. Moreover, our method successfully reconstructs acquisitions with insufficient field-of-view. We further compare our approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from the human head and knee. In addition, we show its applicability to non-Cartesian imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we show that ENLIVE can be related to a low-rank formulation of blind multi-channel deconvolution, explaining why it inherently promotes low-rank solutions. |
doi_str_mv | 10.1038/s41598-019-39888-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6395635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187022702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-24ad1c3dcf177e4074b89d8afd0d62a135e4a08f1060f8b406f7a3b90230bb3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoVtQ_4EICbtyM5jUzGReClKqFWsXXNmRmkjZlmmgyI_jvjbbW6sJASOB899x7OQAcYHSCEeWngeG04AnCRUILznmSb4AdgliaEErI5tq_B_ZDmKF4UlIwXGyDHkUcZxSTHfA0GI-Gz4MzeGHhQGtTGWVbOHa2MVZJD29UO3U11M7DvmxM6WVroqhCgNLW8N6VXWjhnfSyaVQDh3M5MXayB7a0bILaX7674OFy8Ni_Tka3V8P-xSipWM7ahDBZ44rWlcZ5rhjKWcmLmktdozojEtNUMYm4xihDmpcMZTqXtCwQoags6S44X7i-dOVc1VWcPI4hXryZS_8unDTit2LNVEzcm8hokWY0jQbHSwPvXjsVWjE3oVJNI61yXRAE8xwRhjmP6NEfdOY6b-NyS4rEGymyoCrvQvBKr4bBSHzGJhaxiRib-IpN5LHocH2NVcl3SBGgCyBEyU6U_-n9j-0H9OiiYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187022702</pqid></control><display><type>article</type><title>ENLIVE: An Efficient Nonlinear Method for Calibrationless and Robust Parallel Imaging</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Holme, H. Christian M. ; Rosenzweig, Sebastian ; Ong, Frank ; Wilke, Robin N. ; Lustig, Michael ; Uecker, Martin</creator><creatorcontrib>Holme, H. Christian M. ; Rosenzweig, Sebastian ; Ong, Frank ; Wilke, Robin N. ; Lustig, Michael ; Uecker, Martin</creatorcontrib><description>Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging technique which simultaneously estimates coil profiles and image content in a relaxed forward model. Our method is robust against a wide class of data inconsistencies, minimizes imaging artifacts and is comparably fast, combining important advantages of many conceptually different state-of-the-art parallel imaging approaches. Depending on the experimental setting, data can be undersampled well below the Nyquist limit. Here, even high acceleration factors yield excellent imaging results while being robust to noise and the occurrence of phase singularities in the image domain, as we show on different data. Moreover, our method successfully reconstructs acquisitions with insufficient field-of-view. We further compare our approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from the human head and knee. In addition, we show its applicability to non-Cartesian imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we show that ENLIVE can be related to a low-rank formulation of blind multi-channel deconvolution, explaining why it inherently promotes low-rank solutions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-39888-7</identifier><identifier>PMID: 30816312</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/57 ; 631/1647/245/1628 ; 639/766/930/2735 ; Humanities and Social Sciences ; Knee ; Magnetic resonance imaging ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-02, Vol.9 (1), p.3034-3034, Article 3034</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-24ad1c3dcf177e4074b89d8afd0d62a135e4a08f1060f8b406f7a3b90230bb3</citedby><cites>FETCH-LOGICAL-c474t-24ad1c3dcf177e4074b89d8afd0d62a135e4a08f1060f8b406f7a3b90230bb3</cites><orcidid>0000-0002-8850-809X ; 0000-0002-8619-0444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395635/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395635/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30816312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holme, H. Christian M.</creatorcontrib><creatorcontrib>Rosenzweig, Sebastian</creatorcontrib><creatorcontrib>Ong, Frank</creatorcontrib><creatorcontrib>Wilke, Robin N.</creatorcontrib><creatorcontrib>Lustig, Michael</creatorcontrib><creatorcontrib>Uecker, Martin</creatorcontrib><title>ENLIVE: An Efficient Nonlinear Method for Calibrationless and Robust Parallel Imaging</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging technique which simultaneously estimates coil profiles and image content in a relaxed forward model. Our method is robust against a wide class of data inconsistencies, minimizes imaging artifacts and is comparably fast, combining important advantages of many conceptually different state-of-the-art parallel imaging approaches. Depending on the experimental setting, data can be undersampled well below the Nyquist limit. Here, even high acceleration factors yield excellent imaging results while being robust to noise and the occurrence of phase singularities in the image domain, as we show on different data. Moreover, our method successfully reconstructs acquisitions with insufficient field-of-view. We further compare our approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from the human head and knee. In addition, we show its applicability to non-Cartesian imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we show that ENLIVE can be related to a low-rank formulation of blind multi-channel deconvolution, explaining why it inherently promotes low-rank solutions.</description><subject>59/57</subject><subject>631/1647/245/1628</subject><subject>639/766/930/2735</subject><subject>Humanities and Social Sciences</subject><subject>Knee</subject><subject>Magnetic resonance imaging</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhYMoVtQ_4EICbtyM5jUzGReClKqFWsXXNmRmkjZlmmgyI_jvjbbW6sJASOB899x7OQAcYHSCEeWngeG04AnCRUILznmSb4AdgliaEErI5tq_B_ZDmKF4UlIwXGyDHkUcZxSTHfA0GI-Gz4MzeGHhQGtTGWVbOHa2MVZJD29UO3U11M7DvmxM6WVroqhCgNLW8N6VXWjhnfSyaVQDh3M5MXayB7a0bILaX7674OFy8Ni_Tka3V8P-xSipWM7ahDBZ44rWlcZ5rhjKWcmLmktdozojEtNUMYm4xihDmpcMZTqXtCwQoags6S44X7i-dOVc1VWcPI4hXryZS_8unDTit2LNVEzcm8hokWY0jQbHSwPvXjsVWjE3oVJNI61yXRAE8xwRhjmP6NEfdOY6b-NyS4rEGymyoCrvQvBKr4bBSHzGJhaxiRib-IpN5LHocH2NVcl3SBGgCyBEyU6U_-n9j-0H9OiiYw</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Holme, H. Christian M.</creator><creator>Rosenzweig, Sebastian</creator><creator>Ong, Frank</creator><creator>Wilke, Robin N.</creator><creator>Lustig, Michael</creator><creator>Uecker, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8850-809X</orcidid><orcidid>https://orcid.org/0000-0002-8619-0444</orcidid></search><sort><creationdate>20190228</creationdate><title>ENLIVE: An Efficient Nonlinear Method for Calibrationless and Robust Parallel Imaging</title><author>Holme, H. Christian M. ; Rosenzweig, Sebastian ; Ong, Frank ; Wilke, Robin N. ; Lustig, Michael ; Uecker, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-24ad1c3dcf177e4074b89d8afd0d62a135e4a08f1060f8b406f7a3b90230bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>59/57</topic><topic>631/1647/245/1628</topic><topic>639/766/930/2735</topic><topic>Humanities and Social Sciences</topic><topic>Knee</topic><topic>Magnetic resonance imaging</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holme, H. Christian M.</creatorcontrib><creatorcontrib>Rosenzweig, Sebastian</creatorcontrib><creatorcontrib>Ong, Frank</creatorcontrib><creatorcontrib>Wilke, Robin N.</creatorcontrib><creatorcontrib>Lustig, Michael</creatorcontrib><creatorcontrib>Uecker, Martin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holme, H. Christian M.</au><au>Rosenzweig, Sebastian</au><au>Ong, Frank</au><au>Wilke, Robin N.</au><au>Lustig, Michael</au><au>Uecker, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ENLIVE: An Efficient Nonlinear Method for Calibrationless and Robust Parallel Imaging</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>3034</spage><epage>3034</epage><pages>3034-3034</pages><artnum>3034</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging technique which simultaneously estimates coil profiles and image content in a relaxed forward model. Our method is robust against a wide class of data inconsistencies, minimizes imaging artifacts and is comparably fast, combining important advantages of many conceptually different state-of-the-art parallel imaging approaches. Depending on the experimental setting, data can be undersampled well below the Nyquist limit. Here, even high acceleration factors yield excellent imaging results while being robust to noise and the occurrence of phase singularities in the image domain, as we show on different data. Moreover, our method successfully reconstructs acquisitions with insufficient field-of-view. We further compare our approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from the human head and knee. In addition, we show its applicability to non-Cartesian imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we show that ENLIVE can be related to a low-rank formulation of blind multi-channel deconvolution, explaining why it inherently promotes low-rank solutions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30816312</pmid><doi>10.1038/s41598-019-39888-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8850-809X</orcidid><orcidid>https://orcid.org/0000-0002-8619-0444</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-02, Vol.9 (1), p.3034-3034, Article 3034 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6395635 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 59/57 631/1647/245/1628 639/766/930/2735 Humanities and Social Sciences Knee Magnetic resonance imaging multidisciplinary NMR Nuclear magnetic resonance Science Science (multidisciplinary) |
title | ENLIVE: An Efficient Nonlinear Method for Calibrationless and Robust Parallel Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ENLIVE:%20An%20Efficient%20Nonlinear%20Method%20for%20Calibrationless%20and%20Robust%20Parallel%20Imaging&rft.jtitle=Scientific%20reports&rft.au=Holme,%20H.%20Christian%20M.&rft.date=2019-02-28&rft.volume=9&rft.issue=1&rft.spage=3034&rft.epage=3034&rft.pages=3034-3034&rft.artnum=3034&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-39888-7&rft_dat=%3Cproquest_pubme%3E2187022702%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187022702&rft_id=info:pmid/30816312&rfr_iscdi=true |