The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials
In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integ...
Gespeichert in:
Veröffentlicht in: | Neuroinformatics (Totowa, N.J.) N.J.), 2019-01, Vol.17 (1), p.27-42 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | Neuroinformatics (Totowa, N.J.) |
container_volume | 17 |
creator | Bode, Stefan Feuerriegel, Daniel Bennett, Daniel Alday, Phillip M. |
description | In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig
2004
; Lopez-Calderon and Luck
2014
; Oostenveld et al.
2011
). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community. |
doi_str_mv | 10.1007/s12021-018-9375-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6394452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033531643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-d1bd5f28fee02b86cee97a98a2bd8af92887bc7ea2211a747f5a8e4c0b47cc6d3</originalsourceid><addsrcrecordid>eNp1kU1OHDEQhS0UFAjhANlElrIhCye2-8f2JtLAkAQJBEKDxM5yu6sHo5422N0jYMUduGFOEjdDCInEqsqq772y_RD6wOgXRqn4GhmnnBHKJFGZKMjdGtpkRaEIpVK9GftMES4U20DvYryklJeC0rdogyvBWSnpJvKzC8BTsC46342Nr103xzPv293jc7wznc5S_Yx_3T_gCT4a2t4tTXCmB3xi-h5ChyedaW-ji4-iyt_gxge8v4SuJ6fQJrLGJ75PR2fa-B6tN6nA9lPdQmff92d7P8nh8Y-DvckhsbmUPalZVRcNlw0A5ZUsLYASRknDq1qaRnEpRWUFGM4ZMyIXTWEk5JZWubC2rLMt9G3lezVUC6htWh9Mq6-CW5hwq71x-t9J5y703C91mak8L3gy2HkyCP56gNjrhYsW2tZ04IeoOc1yrmjJs4R--g-99ENIv_JIZUXGynyk2IqywccYoHm-DKN6jFOv4tQpTj3Gqe-S5uPLVzwr_uSXAL4CYhp1cwh_V7_u-hsp0q06</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033531643</pqid></control><display><type>article</type><title>The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials</title><source>MEDLINE</source><source>Springer Online Journals</source><creator>Bode, Stefan ; Feuerriegel, Daniel ; Bennett, Daniel ; Alday, Phillip M.</creator><creatorcontrib>Bode, Stefan ; Feuerriegel, Daniel ; Bennett, Daniel ; Alday, Phillip M.</creatorcontrib><description>In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig
2004
; Lopez-Calderon and Luck
2014
; Oostenveld et al.
2011
). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-018-9375-z</identifier><identifier>PMID: 29721680</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Cognitive ability ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; EEG ; Electroencephalography - methods ; Event-related potentials ; Evoked Potentials - physiology ; Humans ; Medical imaging ; Multivariate Analysis ; Nervous system ; Neuroimaging ; Neuroimaging - methods ; Neurology ; Neurosciences ; Signal Processing, Computer-Assisted ; Software Original ; Software Original Article ; Support Vector Machine</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2019-01, Vol.17 (1), p.27-42</ispartof><rights>The Author(s) 2018</rights><rights>Neuroinformatics is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c488t-d1bd5f28fee02b86cee97a98a2bd8af92887bc7ea2211a747f5a8e4c0b47cc6d3</cites><orcidid>0000-0002-0357-1920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-018-9375-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-018-9375-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29721680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bode, Stefan</creatorcontrib><creatorcontrib>Feuerriegel, Daniel</creatorcontrib><creatorcontrib>Bennett, Daniel</creatorcontrib><creatorcontrib>Alday, Phillip M.</creatorcontrib><title>The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig
2004
; Lopez-Calderon and Luck
2014
; Oostenveld et al.
2011
). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Cognitive ability</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Event-related potentials</subject><subject>Evoked Potentials - physiology</subject><subject>Humans</subject><subject>Medical imaging</subject><subject>Multivariate Analysis</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software Original</subject><subject>Software Original Article</subject><subject>Support Vector Machine</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1OHDEQhS0UFAjhANlElrIhCye2-8f2JtLAkAQJBEKDxM5yu6sHo5422N0jYMUduGFOEjdDCInEqsqq772y_RD6wOgXRqn4GhmnnBHKJFGZKMjdGtpkRaEIpVK9GftMES4U20DvYryklJeC0rdogyvBWSnpJvKzC8BTsC46342Nr103xzPv293jc7wznc5S_Yx_3T_gCT4a2t4tTXCmB3xi-h5ChyedaW-ji4-iyt_gxge8v4SuJ6fQJrLGJ75PR2fa-B6tN6nA9lPdQmff92d7P8nh8Y-DvckhsbmUPalZVRcNlw0A5ZUsLYASRknDq1qaRnEpRWUFGM4ZMyIXTWEk5JZWubC2rLMt9G3lezVUC6htWh9Mq6-CW5hwq71x-t9J5y703C91mak8L3gy2HkyCP56gNjrhYsW2tZ04IeoOc1yrmjJs4R--g-99ENIv_JIZUXGynyk2IqywccYoHm-DKN6jFOv4tQpTj3Gqe-S5uPLVzwr_uSXAL4CYhp1cwh_V7_u-hsp0q06</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bode, Stefan</creator><creator>Feuerriegel, Daniel</creator><creator>Bennett, Daniel</creator><creator>Alday, Phillip M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0357-1920</orcidid></search><sort><creationdate>20190101</creationdate><title>The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials</title><author>Bode, Stefan ; Feuerriegel, Daniel ; Bennett, Daniel ; Alday, Phillip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-d1bd5f28fee02b86cee97a98a2bd8af92887bc7ea2211a747f5a8e4c0b47cc6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Cognitive ability</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Event-related potentials</topic><topic>Evoked Potentials - physiology</topic><topic>Humans</topic><topic>Medical imaging</topic><topic>Multivariate Analysis</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software Original</topic><topic>Software Original Article</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bode, Stefan</creatorcontrib><creatorcontrib>Feuerriegel, Daniel</creatorcontrib><creatorcontrib>Bennett, Daniel</creatorcontrib><creatorcontrib>Alday, Phillip M.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bode, Stefan</au><au>Feuerriegel, Daniel</au><au>Bennett, Daniel</au><au>Alday, Phillip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>17</volume><issue>1</issue><spage>27</spage><epage>42</epage><pages>27-42</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig
2004
; Lopez-Calderon and Luck
2014
; Oostenveld et al.
2011
). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29721680</pmid><doi>10.1007/s12021-018-9375-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0357-1920</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-2791 |
ispartof | Neuroinformatics (Totowa, N.J.), 2019-01, Vol.17 (1), p.27-42 |
issn | 1539-2791 1559-0089 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6394452 |
source | MEDLINE; Springer Online Journals |
subjects | Bioinformatics Biomedical and Life Sciences Biomedicine Brain - physiology Cognitive ability Computational Biology/Bioinformatics Computer Appl. in Life Sciences EEG Electroencephalography - methods Event-related potentials Evoked Potentials - physiology Humans Medical imaging Multivariate Analysis Nervous system Neuroimaging Neuroimaging - methods Neurology Neurosciences Signal Processing, Computer-Assisted Software Original Software Original Article Support Vector Machine |
title | The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Decision%20Decoding%20ToolBOX%20(DDTBOX)%20%E2%80%93%20A%20Multivariate%20Pattern%20Analysis%20Toolbox%20for%20Event-Related%20Potentials&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Bode,%20Stefan&rft.date=2019-01-01&rft.volume=17&rft.issue=1&rft.spage=27&rft.epage=42&rft.pages=27-42&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-018-9375-z&rft_dat=%3Cproquest_pubme%3E2033531643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033531643&rft_id=info:pmid/29721680&rfr_iscdi=true |