The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials

In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroinformatics (Totowa, N.J.) N.J.), 2019-01, Vol.17 (1), p.27-42
Hauptverfasser: Bode, Stefan, Feuerriegel, Daniel, Bennett, Daniel, Alday, Phillip M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 27
container_title Neuroinformatics (Totowa, N.J.)
container_volume 17
creator Bode, Stefan
Feuerriegel, Daniel
Bennett, Daniel
Alday, Phillip M.
description In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig 2004 ; Lopez-Calderon and Luck 2014 ; Oostenveld et al. 2011 ). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.
doi_str_mv 10.1007/s12021-018-9375-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6394452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033531643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-d1bd5f28fee02b86cee97a98a2bd8af92887bc7ea2211a747f5a8e4c0b47cc6d3</originalsourceid><addsrcrecordid>eNp1kU1OHDEQhS0UFAjhANlElrIhCye2-8f2JtLAkAQJBEKDxM5yu6sHo5422N0jYMUduGFOEjdDCInEqsqq772y_RD6wOgXRqn4GhmnnBHKJFGZKMjdGtpkRaEIpVK9GftMES4U20DvYryklJeC0rdogyvBWSnpJvKzC8BTsC46342Nr103xzPv293jc7wznc5S_Yx_3T_gCT4a2t4tTXCmB3xi-h5ChyedaW-ji4-iyt_gxge8v4SuJ6fQJrLGJ75PR2fa-B6tN6nA9lPdQmff92d7P8nh8Y-DvckhsbmUPalZVRcNlw0A5ZUsLYASRknDq1qaRnEpRWUFGM4ZMyIXTWEk5JZWubC2rLMt9G3lezVUC6htWh9Mq6-CW5hwq71x-t9J5y703C91mak8L3gy2HkyCP56gNjrhYsW2tZ04IeoOc1yrmjJs4R--g-99ENIv_JIZUXGynyk2IqywccYoHm-DKN6jFOv4tQpTj3Gqe-S5uPLVzwr_uSXAL4CYhp1cwh_V7_u-hsp0q06</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033531643</pqid></control><display><type>article</type><title>The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials</title><source>MEDLINE</source><source>Springer Online Journals</source><creator>Bode, Stefan ; Feuerriegel, Daniel ; Bennett, Daniel ; Alday, Phillip M.</creator><creatorcontrib>Bode, Stefan ; Feuerriegel, Daniel ; Bennett, Daniel ; Alday, Phillip M.</creatorcontrib><description>In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig 2004 ; Lopez-Calderon and Luck 2014 ; Oostenveld et al. 2011 ). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-018-9375-z</identifier><identifier>PMID: 29721680</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Cognitive ability ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; EEG ; Electroencephalography - methods ; Event-related potentials ; Evoked Potentials - physiology ; Humans ; Medical imaging ; Multivariate Analysis ; Nervous system ; Neuroimaging ; Neuroimaging - methods ; Neurology ; Neurosciences ; Signal Processing, Computer-Assisted ; Software Original ; Software Original Article ; Support Vector Machine</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2019-01, Vol.17 (1), p.27-42</ispartof><rights>The Author(s) 2018</rights><rights>Neuroinformatics is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c488t-d1bd5f28fee02b86cee97a98a2bd8af92887bc7ea2211a747f5a8e4c0b47cc6d3</cites><orcidid>0000-0002-0357-1920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-018-9375-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-018-9375-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29721680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bode, Stefan</creatorcontrib><creatorcontrib>Feuerriegel, Daniel</creatorcontrib><creatorcontrib>Bennett, Daniel</creatorcontrib><creatorcontrib>Alday, Phillip M.</creatorcontrib><title>The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig 2004 ; Lopez-Calderon and Luck 2014 ; Oostenveld et al. 2011 ). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Cognitive ability</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Event-related potentials</subject><subject>Evoked Potentials - physiology</subject><subject>Humans</subject><subject>Medical imaging</subject><subject>Multivariate Analysis</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software Original</subject><subject>Software Original Article</subject><subject>Support Vector Machine</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1OHDEQhS0UFAjhANlElrIhCye2-8f2JtLAkAQJBEKDxM5yu6sHo5422N0jYMUduGFOEjdDCInEqsqq772y_RD6wOgXRqn4GhmnnBHKJFGZKMjdGtpkRaEIpVK9GftMES4U20DvYryklJeC0rdogyvBWSnpJvKzC8BTsC46342Nr103xzPv293jc7wznc5S_Yx_3T_gCT4a2t4tTXCmB3xi-h5ChyedaW-ji4-iyt_gxge8v4SuJ6fQJrLGJ75PR2fa-B6tN6nA9lPdQmff92d7P8nh8Y-DvckhsbmUPalZVRcNlw0A5ZUsLYASRknDq1qaRnEpRWUFGM4ZMyIXTWEk5JZWubC2rLMt9G3lezVUC6htWh9Mq6-CW5hwq71x-t9J5y703C91mak8L3gy2HkyCP56gNjrhYsW2tZ04IeoOc1yrmjJs4R--g-99ENIv_JIZUXGynyk2IqywccYoHm-DKN6jFOv4tQpTj3Gqe-S5uPLVzwr_uSXAL4CYhp1cwh_V7_u-hsp0q06</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bode, Stefan</creator><creator>Feuerriegel, Daniel</creator><creator>Bennett, Daniel</creator><creator>Alday, Phillip M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0357-1920</orcidid></search><sort><creationdate>20190101</creationdate><title>The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials</title><author>Bode, Stefan ; Feuerriegel, Daniel ; Bennett, Daniel ; Alday, Phillip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-d1bd5f28fee02b86cee97a98a2bd8af92887bc7ea2211a747f5a8e4c0b47cc6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Cognitive ability</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Event-related potentials</topic><topic>Evoked Potentials - physiology</topic><topic>Humans</topic><topic>Medical imaging</topic><topic>Multivariate Analysis</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software Original</topic><topic>Software Original Article</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bode, Stefan</creatorcontrib><creatorcontrib>Feuerriegel, Daniel</creatorcontrib><creatorcontrib>Bennett, Daniel</creatorcontrib><creatorcontrib>Alday, Phillip M.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bode, Stefan</au><au>Feuerriegel, Daniel</au><au>Bennett, Daniel</au><au>Alday, Phillip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>17</volume><issue>1</issue><spage>27</spage><epage>42</epage><pages>27-42</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig 2004 ; Lopez-Calderon and Luck 2014 ; Oostenveld et al. 2011 ). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29721680</pmid><doi>10.1007/s12021-018-9375-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0357-1920</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-2791
ispartof Neuroinformatics (Totowa, N.J.), 2019-01, Vol.17 (1), p.27-42
issn 1539-2791
1559-0089
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6394452
source MEDLINE; Springer Online Journals
subjects Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - physiology
Cognitive ability
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
EEG
Electroencephalography - methods
Event-related potentials
Evoked Potentials - physiology
Humans
Medical imaging
Multivariate Analysis
Nervous system
Neuroimaging
Neuroimaging - methods
Neurology
Neurosciences
Signal Processing, Computer-Assisted
Software Original
Software Original Article
Support Vector Machine
title The Decision Decoding ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-Related Potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Decision%20Decoding%20ToolBOX%20(DDTBOX)%20%E2%80%93%20A%20Multivariate%20Pattern%20Analysis%20Toolbox%20for%20Event-Related%20Potentials&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Bode,%20Stefan&rft.date=2019-01-01&rft.volume=17&rft.issue=1&rft.spage=27&rft.epage=42&rft.pages=27-42&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-018-9375-z&rft_dat=%3Cproquest_pubme%3E2033531643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033531643&rft_id=info:pmid/29721680&rfr_iscdi=true