A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling
Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the hetero...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2019-03, Vol.179 (3), p.986-1000 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1000 |
---|---|
container_issue | 3 |
container_start_page | 986 |
container_title | Plant physiology (Bethesda) |
container_volume | 179 |
creator | Iacopino, Sergio Jurinovich, Sandro Cupellini, Lorenzo Piccinini, Luca Cardarelli, Francesco Perata, Pierdomenico Mennucci, Benedetta Giuntoli, Beatrice Licausi, Francesco |
description | Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis (
) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision. |
doi_str_mv | 10.1104/pp.18.01003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136555005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-51913926a3a5171710a5419b3b6ad2ca570ce3e22f44f71040b97642c626efc73</originalsourceid><addsrcrecordid>eNpVUE1LAzEQDaLYWj15lxwF2Tr52o-LUIu1glCheg7ZNNtGttl1s5XuvzfaWpRhGJh5vPfmIXRJYEgI8Nu6HpJ0CASAHaE-EYxGVPD0GPXDhkaQplkPnXn_DgCEEX6Kegy4yGgc99FkhOeda1emtRrPtt3SODw3zlcNLkK_lMq1Ht8rbxa4cnjk7FqVeNrV1dYqPLdLp0rrlufopFClNxf7OUBvk4fX8TR6nj0-jUfPkeaUtZEgGWFBWDElSBIKlOAky1keqwXVSiSgDTOUFpwX4cohz5KYUx3T2BQ6YQN0t-OtN_naLLRxbaNKWTfBVtPJSln5_-LsSi6rTxmzjCUZBILrPUFTfWyMb-Xaem3K8KepNl5SwmIhBIAI0JsdVDeV940pDjIE5Hfysq4lSeVP8gF99dfZAfsbNfsCMTt9nQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136555005</pqid></control><display><type>article</type><title>A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Iacopino, Sergio ; Jurinovich, Sandro ; Cupellini, Lorenzo ; Piccinini, Luca ; Cardarelli, Francesco ; Perata, Pierdomenico ; Mennucci, Benedetta ; Giuntoli, Beatrice ; Licausi, Francesco</creator><creatorcontrib>Iacopino, Sergio ; Jurinovich, Sandro ; Cupellini, Lorenzo ; Piccinini, Luca ; Cardarelli, Francesco ; Perata, Pierdomenico ; Mennucci, Benedetta ; Giuntoli, Beatrice ; Licausi, Francesco</creatorcontrib><description>Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis (
) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.01003</identifier><identifier>PMID: 30459266</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Animals ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Biosensing Techniques - methods ; Cell Hypoxia ; Gene Expression Regulation, Plant - genetics ; Genetic Engineering - methods ; Hydroxylation ; Oxygen - chemistry ; Oxygen - metabolism ; s - Focus Issue ; Signal Transduction ; Synthetic Biology ; Transcription Factors</subject><ispartof>Plant physiology (Bethesda), 2019-03, Vol.179 (3), p.986-1000</ispartof><rights>2019 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-51913926a3a5171710a5419b3b6ad2ca570ce3e22f44f71040b97642c626efc73</citedby><orcidid>0000-0003-4968-4071 ; 0000-0003-4769-441X ; 0000-0003-2832-3437 ; 0000-0003-0848-2908 ; 0000-0001-9444-0610 ; 0000-0002-5529-4160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30459266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iacopino, Sergio</creatorcontrib><creatorcontrib>Jurinovich, Sandro</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Piccinini, Luca</creatorcontrib><creatorcontrib>Cardarelli, Francesco</creatorcontrib><creatorcontrib>Perata, Pierdomenico</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Giuntoli, Beatrice</creatorcontrib><creatorcontrib>Licausi, Francesco</creatorcontrib><title>A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis (
) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision.</description><subject>Animals</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Biosensing Techniques - methods</subject><subject>Cell Hypoxia</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Genetic Engineering - methods</subject><subject>Hydroxylation</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>s - Focus Issue</subject><subject>Signal Transduction</subject><subject>Synthetic Biology</subject><subject>Transcription Factors</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUE1LAzEQDaLYWj15lxwF2Tr52o-LUIu1glCheg7ZNNtGttl1s5XuvzfaWpRhGJh5vPfmIXRJYEgI8Nu6HpJ0CASAHaE-EYxGVPD0GPXDhkaQplkPnXn_DgCEEX6Kegy4yGgc99FkhOeda1emtRrPtt3SODw3zlcNLkK_lMq1Ht8rbxa4cnjk7FqVeNrV1dYqPLdLp0rrlufopFClNxf7OUBvk4fX8TR6nj0-jUfPkeaUtZEgGWFBWDElSBIKlOAky1keqwXVSiSgDTOUFpwX4cohz5KYUx3T2BQ6YQN0t-OtN_naLLRxbaNKWTfBVtPJSln5_-LsSi6rTxmzjCUZBILrPUFTfWyMb-Xaem3K8KepNl5SwmIhBIAI0JsdVDeV940pDjIE5Hfysq4lSeVP8gF99dfZAfsbNfsCMTt9nQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Iacopino, Sergio</creator><creator>Jurinovich, Sandro</creator><creator>Cupellini, Lorenzo</creator><creator>Piccinini, Luca</creator><creator>Cardarelli, Francesco</creator><creator>Perata, Pierdomenico</creator><creator>Mennucci, Benedetta</creator><creator>Giuntoli, Beatrice</creator><creator>Licausi, Francesco</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4968-4071</orcidid><orcidid>https://orcid.org/0000-0003-4769-441X</orcidid><orcidid>https://orcid.org/0000-0003-2832-3437</orcidid><orcidid>https://orcid.org/0000-0003-0848-2908</orcidid><orcidid>https://orcid.org/0000-0001-9444-0610</orcidid><orcidid>https://orcid.org/0000-0002-5529-4160</orcidid></search><sort><creationdate>20190301</creationdate><title>A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling</title><author>Iacopino, Sergio ; Jurinovich, Sandro ; Cupellini, Lorenzo ; Piccinini, Luca ; Cardarelli, Francesco ; Perata, Pierdomenico ; Mennucci, Benedetta ; Giuntoli, Beatrice ; Licausi, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-51913926a3a5171710a5419b3b6ad2ca570ce3e22f44f71040b97642c626efc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Biosensing Techniques - methods</topic><topic>Cell Hypoxia</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Genetic Engineering - methods</topic><topic>Hydroxylation</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>s - Focus Issue</topic><topic>Signal Transduction</topic><topic>Synthetic Biology</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iacopino, Sergio</creatorcontrib><creatorcontrib>Jurinovich, Sandro</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Piccinini, Luca</creatorcontrib><creatorcontrib>Cardarelli, Francesco</creatorcontrib><creatorcontrib>Perata, Pierdomenico</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Giuntoli, Beatrice</creatorcontrib><creatorcontrib>Licausi, Francesco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iacopino, Sergio</au><au>Jurinovich, Sandro</au><au>Cupellini, Lorenzo</au><au>Piccinini, Luca</au><au>Cardarelli, Francesco</au><au>Perata, Pierdomenico</au><au>Mennucci, Benedetta</au><au>Giuntoli, Beatrice</au><au>Licausi, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>179</volume><issue>3</issue><spage>986</spage><epage>1000</epage><pages>986-1000</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis (
) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>30459266</pmid><doi>10.1104/pp.18.01003</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4968-4071</orcidid><orcidid>https://orcid.org/0000-0003-4769-441X</orcidid><orcidid>https://orcid.org/0000-0003-2832-3437</orcidid><orcidid>https://orcid.org/0000-0003-0848-2908</orcidid><orcidid>https://orcid.org/0000-0001-9444-0610</orcidid><orcidid>https://orcid.org/0000-0002-5529-4160</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2019-03, Vol.179 (3), p.986-1000 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393790 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Animals Arabidopsis - genetics Arabidopsis - metabolism Biosensing Techniques - methods Cell Hypoxia Gene Expression Regulation, Plant - genetics Genetic Engineering - methods Hydroxylation Oxygen - chemistry Oxygen - metabolism s - Focus Issue Signal Transduction Synthetic Biology Transcription Factors |
title | A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Synthetic%20Oxygen%20Sensor%20for%20Plants%20Based%20on%20Animal%20Hypoxia%20Signaling&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Iacopino,%20Sergio&rft.date=2019-03-01&rft.volume=179&rft.issue=3&rft.spage=986&rft.epage=1000&rft.pages=986-1000&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.01003&rft_dat=%3Cproquest_pubme%3E2136555005%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136555005&rft_id=info:pmid/30459266&rfr_iscdi=true |