A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling

Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the hetero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2019-03, Vol.179 (3), p.986-1000
Hauptverfasser: Iacopino, Sergio, Jurinovich, Sandro, Cupellini, Lorenzo, Piccinini, Luca, Cardarelli, Francesco, Perata, Pierdomenico, Mennucci, Benedetta, Giuntoli, Beatrice, Licausi, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1000
container_issue 3
container_start_page 986
container_title Plant physiology (Bethesda)
container_volume 179
creator Iacopino, Sergio
Jurinovich, Sandro
Cupellini, Lorenzo
Piccinini, Luca
Cardarelli, Francesco
Perata, Pierdomenico
Mennucci, Benedetta
Giuntoli, Beatrice
Licausi, Francesco
description Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis ( ) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision.
doi_str_mv 10.1104/pp.18.01003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136555005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-51913926a3a5171710a5419b3b6ad2ca570ce3e22f44f71040b97642c626efc73</originalsourceid><addsrcrecordid>eNpVUE1LAzEQDaLYWj15lxwF2Tr52o-LUIu1glCheg7ZNNtGttl1s5XuvzfaWpRhGJh5vPfmIXRJYEgI8Nu6HpJ0CASAHaE-EYxGVPD0GPXDhkaQplkPnXn_DgCEEX6Kegy4yGgc99FkhOeda1emtRrPtt3SODw3zlcNLkK_lMq1Ht8rbxa4cnjk7FqVeNrV1dYqPLdLp0rrlufopFClNxf7OUBvk4fX8TR6nj0-jUfPkeaUtZEgGWFBWDElSBIKlOAky1keqwXVSiSgDTOUFpwX4cohz5KYUx3T2BQ6YQN0t-OtN_naLLRxbaNKWTfBVtPJSln5_-LsSi6rTxmzjCUZBILrPUFTfWyMb-Xaem3K8KepNl5SwmIhBIAI0JsdVDeV940pDjIE5Hfysq4lSeVP8gF99dfZAfsbNfsCMTt9nQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136555005</pqid></control><display><type>article</type><title>A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Iacopino, Sergio ; Jurinovich, Sandro ; Cupellini, Lorenzo ; Piccinini, Luca ; Cardarelli, Francesco ; Perata, Pierdomenico ; Mennucci, Benedetta ; Giuntoli, Beatrice ; Licausi, Francesco</creator><creatorcontrib>Iacopino, Sergio ; Jurinovich, Sandro ; Cupellini, Lorenzo ; Piccinini, Luca ; Cardarelli, Francesco ; Perata, Pierdomenico ; Mennucci, Benedetta ; Giuntoli, Beatrice ; Licausi, Francesco</creatorcontrib><description>Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis ( ) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.01003</identifier><identifier>PMID: 30459266</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Animals ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Biosensing Techniques - methods ; Cell Hypoxia ; Gene Expression Regulation, Plant - genetics ; Genetic Engineering - methods ; Hydroxylation ; Oxygen - chemistry ; Oxygen - metabolism ; s - Focus Issue ; Signal Transduction ; Synthetic Biology ; Transcription Factors</subject><ispartof>Plant physiology (Bethesda), 2019-03, Vol.179 (3), p.986-1000</ispartof><rights>2019 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-51913926a3a5171710a5419b3b6ad2ca570ce3e22f44f71040b97642c626efc73</citedby><orcidid>0000-0003-4968-4071 ; 0000-0003-4769-441X ; 0000-0003-2832-3437 ; 0000-0003-0848-2908 ; 0000-0001-9444-0610 ; 0000-0002-5529-4160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30459266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iacopino, Sergio</creatorcontrib><creatorcontrib>Jurinovich, Sandro</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Piccinini, Luca</creatorcontrib><creatorcontrib>Cardarelli, Francesco</creatorcontrib><creatorcontrib>Perata, Pierdomenico</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Giuntoli, Beatrice</creatorcontrib><creatorcontrib>Licausi, Francesco</creatorcontrib><title>A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis ( ) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision.</description><subject>Animals</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Biosensing Techniques - methods</subject><subject>Cell Hypoxia</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Genetic Engineering - methods</subject><subject>Hydroxylation</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>s - Focus Issue</subject><subject>Signal Transduction</subject><subject>Synthetic Biology</subject><subject>Transcription Factors</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUE1LAzEQDaLYWj15lxwF2Tr52o-LUIu1glCheg7ZNNtGttl1s5XuvzfaWpRhGJh5vPfmIXRJYEgI8Nu6HpJ0CASAHaE-EYxGVPD0GPXDhkaQplkPnXn_DgCEEX6Kegy4yGgc99FkhOeda1emtRrPtt3SODw3zlcNLkK_lMq1Ht8rbxa4cnjk7FqVeNrV1dYqPLdLp0rrlufopFClNxf7OUBvk4fX8TR6nj0-jUfPkeaUtZEgGWFBWDElSBIKlOAky1keqwXVSiSgDTOUFpwX4cohz5KYUx3T2BQ6YQN0t-OtN_naLLRxbaNKWTfBVtPJSln5_-LsSi6rTxmzjCUZBILrPUFTfWyMb-Xaem3K8KepNl5SwmIhBIAI0JsdVDeV940pDjIE5Hfysq4lSeVP8gF99dfZAfsbNfsCMTt9nQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Iacopino, Sergio</creator><creator>Jurinovich, Sandro</creator><creator>Cupellini, Lorenzo</creator><creator>Piccinini, Luca</creator><creator>Cardarelli, Francesco</creator><creator>Perata, Pierdomenico</creator><creator>Mennucci, Benedetta</creator><creator>Giuntoli, Beatrice</creator><creator>Licausi, Francesco</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4968-4071</orcidid><orcidid>https://orcid.org/0000-0003-4769-441X</orcidid><orcidid>https://orcid.org/0000-0003-2832-3437</orcidid><orcidid>https://orcid.org/0000-0003-0848-2908</orcidid><orcidid>https://orcid.org/0000-0001-9444-0610</orcidid><orcidid>https://orcid.org/0000-0002-5529-4160</orcidid></search><sort><creationdate>20190301</creationdate><title>A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling</title><author>Iacopino, Sergio ; Jurinovich, Sandro ; Cupellini, Lorenzo ; Piccinini, Luca ; Cardarelli, Francesco ; Perata, Pierdomenico ; Mennucci, Benedetta ; Giuntoli, Beatrice ; Licausi, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-51913926a3a5171710a5419b3b6ad2ca570ce3e22f44f71040b97642c626efc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Biosensing Techniques - methods</topic><topic>Cell Hypoxia</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Genetic Engineering - methods</topic><topic>Hydroxylation</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>s - Focus Issue</topic><topic>Signal Transduction</topic><topic>Synthetic Biology</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iacopino, Sergio</creatorcontrib><creatorcontrib>Jurinovich, Sandro</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Piccinini, Luca</creatorcontrib><creatorcontrib>Cardarelli, Francesco</creatorcontrib><creatorcontrib>Perata, Pierdomenico</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Giuntoli, Beatrice</creatorcontrib><creatorcontrib>Licausi, Francesco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iacopino, Sergio</au><au>Jurinovich, Sandro</au><au>Cupellini, Lorenzo</au><au>Piccinini, Luca</au><au>Cardarelli, Francesco</au><au>Perata, Pierdomenico</au><au>Mennucci, Benedetta</au><au>Giuntoli, Beatrice</au><au>Licausi, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>179</volume><issue>3</issue><spage>986</spage><epage>1000</epage><pages>986-1000</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis ( ) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>30459266</pmid><doi>10.1104/pp.18.01003</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4968-4071</orcidid><orcidid>https://orcid.org/0000-0003-4769-441X</orcidid><orcidid>https://orcid.org/0000-0003-2832-3437</orcidid><orcidid>https://orcid.org/0000-0003-0848-2908</orcidid><orcidid>https://orcid.org/0000-0001-9444-0610</orcidid><orcidid>https://orcid.org/0000-0002-5529-4160</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2019-03, Vol.179 (3), p.986-1000
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393790
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Animals
Arabidopsis - genetics
Arabidopsis - metabolism
Biosensing Techniques - methods
Cell Hypoxia
Gene Expression Regulation, Plant - genetics
Genetic Engineering - methods
Hydroxylation
Oxygen - chemistry
Oxygen - metabolism
s - Focus Issue
Signal Transduction
Synthetic Biology
Transcription Factors
title A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Synthetic%20Oxygen%20Sensor%20for%20Plants%20Based%20on%20Animal%20Hypoxia%20Signaling&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Iacopino,%20Sergio&rft.date=2019-03-01&rft.volume=179&rft.issue=3&rft.spage=986&rft.epage=1000&rft.pages=986-1000&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.01003&rft_dat=%3Cproquest_pubme%3E2136555005%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136555005&rft_id=info:pmid/30459266&rfr_iscdi=true