Predicting extinction phenotype to optimize fear reduction
Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an indivi...
Gespeichert in:
Veröffentlicht in: | Psychopharmacology 2019-01, Vol.236 (1), p.99-110 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 99 |
container_title | Psychopharmacology |
container_volume | 236 |
creator | Monfils, M. H. Lee, H. J. Keller, N. E. Roquet, R. F. Quevedo, S. Agee, L. Cofresi, R. Shumake, J. |
description | Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an individual might respond well to extinction prior to intervention could prove important to treatment outcomes. Here, we test the hypothesis that CO
2
reactivity predicts extinction phenotype in rats, and that variability in CO
2
reactivity as well as extinction long-term memory (LTM) significantly predicts orexin activity in the lateral hypothalamus (LH). Our results validate a rat model of CO
2
reactivity and show that subcomponents of behavioral reactivity following acute CO
2
exposure explain a significant portion of the variance in extinction LTM. Furthermore, we show evidence that variability in CO
2
reactivity is also significantly predictive of orexin activity in the LH, and that orexin activity, in turn, significantly accounts for LTM variance. Our findings open the possibility that we may be able to use CO
2
reactivity as a screening tool to determine if individuals are good candidates for an extinction/exposure-based approach. |
doi_str_mv | 10.1007/s00213-018-5005-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6391193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573937392</galeid><sourcerecordid>A573937392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-b9d66101a329404b79fed800312bafe51968db37879136b95f0b25bd17a3be813</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS1ERW8vPAAbFIkNm7QzdpzELJCqikKlSrCAteUkk1tXiR3sBFGeHodb-oPAljWW_c3xjA9jLxGOEaA6iQAcRQ5Y5xJA5uUTtsFC8JxDxZ-yDYAQuUBZH7KjGK8hjaIunrFDkfJqFLhhbz8H6mw7W7fL6EcKaetdNl2R8_PNRNnsMz_NdrQ_KevJhCzxy2_oOTvozRDpxW3csq_n77-cfcwvP324ODu9zNsSxJw3qitLBDSCqwKKplI9dXUqDXljepKoyrprRFVXCkXZKNlDw2XTYWVEQ6nKLXu3152WZqSuJTcHM-gp2NGEG-2N1Y9vnL3SO_9dl0IhKpEE3twKBP9toTjr0caWhsE48kvUHEGCrArgCX39F3rtl-BSeyslVF1KKe-pnRlIW9f79G67iupTWQkl0lq1jv9BpdnRaFvvqLfp_FEC7hPa4GMM1N_1iKBXw_XecJ0M16vhqcMte_Xwc-4y_jicAL4HYrpyOwr3Hf1f9RdGG7PJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103986555</pqid></control><display><type>article</type><title>Predicting extinction phenotype to optimize fear reduction</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Monfils, M. H. ; Lee, H. J. ; Keller, N. E. ; Roquet, R. F. ; Quevedo, S. ; Agee, L. ; Cofresi, R. ; Shumake, J.</creator><creatorcontrib>Monfils, M. H. ; Lee, H. J. ; Keller, N. E. ; Roquet, R. F. ; Quevedo, S. ; Agee, L. ; Cofresi, R. ; Shumake, J.</creatorcontrib><description>Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an individual might respond well to extinction prior to intervention could prove important to treatment outcomes. Here, we test the hypothesis that CO
2
reactivity predicts extinction phenotype in rats, and that variability in CO
2
reactivity as well as extinction long-term memory (LTM) significantly predicts orexin activity in the lateral hypothalamus (LH). Our results validate a rat model of CO
2
reactivity and show that subcomponents of behavioral reactivity following acute CO
2
exposure explain a significant portion of the variance in extinction LTM. Furthermore, we show evidence that variability in CO
2
reactivity is also significantly predictive of orexin activity in the LH, and that orexin activity, in turn, significantly accounts for LTM variance. Our findings open the possibility that we may be able to use CO
2
reactivity as a screening tool to determine if individuals are good candidates for an extinction/exposure-based approach.</description><identifier>ISSN: 0033-3158</identifier><identifier>EISSN: 1432-2072</identifier><identifier>DOI: 10.1007/s00213-018-5005-6</identifier><identifier>PMID: 30218131</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Animals ; Behavior, Animal ; Behaviorism (Psychology) ; Biomedical and Life Sciences ; Biomedicine ; Carbon dioxide ; Carbon Dioxide - pharmacology ; Conditioned stimulus ; Conditioning ; Conditioning, Psychological ; Exposure ; Extinction behavior ; Extinction, Psychological - drug effects ; Extinction, Psychological - physiology ; Fear ; Fear - drug effects ; Fear - physiology ; Fear conditioning ; Freezing Reaction, Cataleptic ; Hypothalamic Area, Lateral - metabolism ; Hypothalamus ; Hypothalamus (lateral) ; Individuality ; Long term memory ; Luteinizing hormone ; Male ; Memory, Long-Term ; Neurosciences ; Orexins ; Orexins - metabolism ; Original Investigation ; Pharmacology/Toxicology ; Phenotype ; Phenotypes ; Psychiatry ; Psychological aspects ; Rats ; Rats, Sprague-Dawley ; Reactivity ; Rodents ; Variability</subject><ispartof>Psychopharmacology, 2019-01, Vol.236 (1), p.99-110</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Psychopharmacology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-b9d66101a329404b79fed800312bafe51968db37879136b95f0b25bd17a3be813</citedby><cites>FETCH-LOGICAL-c603t-b9d66101a329404b79fed800312bafe51968db37879136b95f0b25bd17a3be813</cites><orcidid>0000-0001-8971-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00213-018-5005-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00213-018-5005-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30218131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monfils, M. H.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Keller, N. E.</creatorcontrib><creatorcontrib>Roquet, R. F.</creatorcontrib><creatorcontrib>Quevedo, S.</creatorcontrib><creatorcontrib>Agee, L.</creatorcontrib><creatorcontrib>Cofresi, R.</creatorcontrib><creatorcontrib>Shumake, J.</creatorcontrib><title>Predicting extinction phenotype to optimize fear reduction</title><title>Psychopharmacology</title><addtitle>Psychopharmacology</addtitle><addtitle>Psychopharmacology (Berl)</addtitle><description>Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an individual might respond well to extinction prior to intervention could prove important to treatment outcomes. Here, we test the hypothesis that CO
2
reactivity predicts extinction phenotype in rats, and that variability in CO
2
reactivity as well as extinction long-term memory (LTM) significantly predicts orexin activity in the lateral hypothalamus (LH). Our results validate a rat model of CO
2
reactivity and show that subcomponents of behavioral reactivity following acute CO
2
exposure explain a significant portion of the variance in extinction LTM. Furthermore, we show evidence that variability in CO
2
reactivity is also significantly predictive of orexin activity in the LH, and that orexin activity, in turn, significantly accounts for LTM variance. Our findings open the possibility that we may be able to use CO
2
reactivity as a screening tool to determine if individuals are good candidates for an extinction/exposure-based approach.</description><subject>Analysis</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Behaviorism (Psychology)</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Conditioned stimulus</subject><subject>Conditioning</subject><subject>Conditioning, Psychological</subject><subject>Exposure</subject><subject>Extinction behavior</subject><subject>Extinction, Psychological - drug effects</subject><subject>Extinction, Psychological - physiology</subject><subject>Fear</subject><subject>Fear - drug effects</subject><subject>Fear - physiology</subject><subject>Fear conditioning</subject><subject>Freezing Reaction, Cataleptic</subject><subject>Hypothalamic Area, Lateral - metabolism</subject><subject>Hypothalamus</subject><subject>Hypothalamus (lateral)</subject><subject>Individuality</subject><subject>Long term memory</subject><subject>Luteinizing hormone</subject><subject>Male</subject><subject>Memory, Long-Term</subject><subject>Neurosciences</subject><subject>Orexins</subject><subject>Orexins - metabolism</subject><subject>Original Investigation</subject><subject>Pharmacology/Toxicology</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Psychiatry</subject><subject>Psychological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactivity</subject><subject>Rodents</subject><subject>Variability</subject><issn>0033-3158</issn><issn>1432-2072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1TAQhS1ERW8vPAAbFIkNm7QzdpzELJCqikKlSrCAteUkk1tXiR3sBFGeHodb-oPAljWW_c3xjA9jLxGOEaA6iQAcRQ5Y5xJA5uUTtsFC8JxDxZ-yDYAQuUBZH7KjGK8hjaIunrFDkfJqFLhhbz8H6mw7W7fL6EcKaetdNl2R8_PNRNnsMz_NdrQ_KevJhCzxy2_oOTvozRDpxW3csq_n77-cfcwvP324ODu9zNsSxJw3qitLBDSCqwKKplI9dXUqDXljepKoyrprRFVXCkXZKNlDw2XTYWVEQ6nKLXu3152WZqSuJTcHM-gp2NGEG-2N1Y9vnL3SO_9dl0IhKpEE3twKBP9toTjr0caWhsE48kvUHEGCrArgCX39F3rtl-BSeyslVF1KKe-pnRlIW9f79G67iupTWQkl0lq1jv9BpdnRaFvvqLfp_FEC7hPa4GMM1N_1iKBXw_XecJ0M16vhqcMte_Xwc-4y_jicAL4HYrpyOwr3Hf1f9RdGG7PJ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Monfils, M. H.</creator><creator>Lee, H. J.</creator><creator>Keller, N. E.</creator><creator>Roquet, R. F.</creator><creator>Quevedo, S.</creator><creator>Agee, L.</creator><creator>Cofresi, R.</creator><creator>Shumake, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8971-6651</orcidid></search><sort><creationdate>20190101</creationdate><title>Predicting extinction phenotype to optimize fear reduction</title><author>Monfils, M. H. ; Lee, H. J. ; Keller, N. E. ; Roquet, R. F. ; Quevedo, S. ; Agee, L. ; Cofresi, R. ; Shumake, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-b9d66101a329404b79fed800312bafe51968db37879136b95f0b25bd17a3be813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Behaviorism (Psychology)</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Conditioned stimulus</topic><topic>Conditioning</topic><topic>Conditioning, Psychological</topic><topic>Exposure</topic><topic>Extinction behavior</topic><topic>Extinction, Psychological - drug effects</topic><topic>Extinction, Psychological - physiology</topic><topic>Fear</topic><topic>Fear - drug effects</topic><topic>Fear - physiology</topic><topic>Fear conditioning</topic><topic>Freezing Reaction, Cataleptic</topic><topic>Hypothalamic Area, Lateral - metabolism</topic><topic>Hypothalamus</topic><topic>Hypothalamus (lateral)</topic><topic>Individuality</topic><topic>Long term memory</topic><topic>Luteinizing hormone</topic><topic>Male</topic><topic>Memory, Long-Term</topic><topic>Neurosciences</topic><topic>Orexins</topic><topic>Orexins - metabolism</topic><topic>Original Investigation</topic><topic>Pharmacology/Toxicology</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Psychiatry</topic><topic>Psychological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactivity</topic><topic>Rodents</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monfils, M. H.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Keller, N. E.</creatorcontrib><creatorcontrib>Roquet, R. F.</creatorcontrib><creatorcontrib>Quevedo, S.</creatorcontrib><creatorcontrib>Agee, L.</creatorcontrib><creatorcontrib>Cofresi, R.</creatorcontrib><creatorcontrib>Shumake, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychopharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monfils, M. H.</au><au>Lee, H. J.</au><au>Keller, N. E.</au><au>Roquet, R. F.</au><au>Quevedo, S.</au><au>Agee, L.</au><au>Cofresi, R.</au><au>Shumake, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting extinction phenotype to optimize fear reduction</atitle><jtitle>Psychopharmacology</jtitle><stitle>Psychopharmacology</stitle><addtitle>Psychopharmacology (Berl)</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>236</volume><issue>1</issue><spage>99</spage><epage>110</epage><pages>99-110</pages><issn>0033-3158</issn><eissn>1432-2072</eissn><abstract>Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an individual might respond well to extinction prior to intervention could prove important to treatment outcomes. Here, we test the hypothesis that CO
2
reactivity predicts extinction phenotype in rats, and that variability in CO
2
reactivity as well as extinction long-term memory (LTM) significantly predicts orexin activity in the lateral hypothalamus (LH). Our results validate a rat model of CO
2
reactivity and show that subcomponents of behavioral reactivity following acute CO
2
exposure explain a significant portion of the variance in extinction LTM. Furthermore, we show evidence that variability in CO
2
reactivity is also significantly predictive of orexin activity in the LH, and that orexin activity, in turn, significantly accounts for LTM variance. Our findings open the possibility that we may be able to use CO
2
reactivity as a screening tool to determine if individuals are good candidates for an extinction/exposure-based approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30218131</pmid><doi>10.1007/s00213-018-5005-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8971-6651</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3158 |
ispartof | Psychopharmacology, 2019-01, Vol.236 (1), p.99-110 |
issn | 0033-3158 1432-2072 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6391193 |
source | MEDLINE; SpringerNature Journals |
subjects | Analysis Animals Behavior, Animal Behaviorism (Psychology) Biomedical and Life Sciences Biomedicine Carbon dioxide Carbon Dioxide - pharmacology Conditioned stimulus Conditioning Conditioning, Psychological Exposure Extinction behavior Extinction, Psychological - drug effects Extinction, Psychological - physiology Fear Fear - drug effects Fear - physiology Fear conditioning Freezing Reaction, Cataleptic Hypothalamic Area, Lateral - metabolism Hypothalamus Hypothalamus (lateral) Individuality Long term memory Luteinizing hormone Male Memory, Long-Term Neurosciences Orexins Orexins - metabolism Original Investigation Pharmacology/Toxicology Phenotype Phenotypes Psychiatry Psychological aspects Rats Rats, Sprague-Dawley Reactivity Rodents Variability |
title | Predicting extinction phenotype to optimize fear reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20extinction%20phenotype%20to%20optimize%20fear%20reduction&rft.jtitle=Psychopharmacology&rft.au=Monfils,%20M.%20H.&rft.date=2019-01-01&rft.volume=236&rft.issue=1&rft.spage=99&rft.epage=110&rft.pages=99-110&rft.issn=0033-3158&rft.eissn=1432-2072&rft_id=info:doi/10.1007/s00213-018-5005-6&rft_dat=%3Cgale_pubme%3EA573937392%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103986555&rft_id=info:pmid/30218131&rft_galeid=A573937392&rfr_iscdi=true |