Predicting extinction phenotype to optimize fear reduction

Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an indivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychopharmacology 2019-01, Vol.236 (1), p.99-110
Hauptverfasser: Monfils, M. H., Lee, H. J., Keller, N. E., Roquet, R. F., Quevedo, S., Agee, L., Cofresi, R., Shumake, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 99
container_title Psychopharmacology
container_volume 236
creator Monfils, M. H.
Lee, H. J.
Keller, N. E.
Roquet, R. F.
Quevedo, S.
Agee, L.
Cofresi, R.
Shumake, J.
description Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an individual might respond well to extinction prior to intervention could prove important to treatment outcomes. Here, we test the hypothesis that CO 2 reactivity predicts extinction phenotype in rats, and that variability in CO 2 reactivity as well as extinction long-term memory (LTM) significantly predicts orexin activity in the lateral hypothalamus (LH). Our results validate a rat model of CO 2 reactivity and show that subcomponents of behavioral reactivity following acute CO 2 exposure explain a significant portion of the variance in extinction LTM. Furthermore, we show evidence that variability in CO 2 reactivity is also significantly predictive of orexin activity in the LH, and that orexin activity, in turn, significantly accounts for LTM variance. Our findings open the possibility that we may be able to use CO 2 reactivity as a screening tool to determine if individuals are good candidates for an extinction/exposure-based approach.
doi_str_mv 10.1007/s00213-018-5005-6
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6391193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573937392</galeid><sourcerecordid>A573937392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-b9d66101a329404b79fed800312bafe51968db37879136b95f0b25bd17a3be813</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS1ERW8vPAAbFIkNm7QzdpzELJCqikKlSrCAteUkk1tXiR3sBFGeHodb-oPAljWW_c3xjA9jLxGOEaA6iQAcRQ5Y5xJA5uUTtsFC8JxDxZ-yDYAQuUBZH7KjGK8hjaIunrFDkfJqFLhhbz8H6mw7W7fL6EcKaetdNl2R8_PNRNnsMz_NdrQ_KevJhCzxy2_oOTvozRDpxW3csq_n77-cfcwvP324ODu9zNsSxJw3qitLBDSCqwKKplI9dXUqDXljepKoyrprRFVXCkXZKNlDw2XTYWVEQ6nKLXu3152WZqSuJTcHM-gp2NGEG-2N1Y9vnL3SO_9dl0IhKpEE3twKBP9toTjr0caWhsE48kvUHEGCrArgCX39F3rtl-BSeyslVF1KKe-pnRlIW9f79G67iupTWQkl0lq1jv9BpdnRaFvvqLfp_FEC7hPa4GMM1N_1iKBXw_XecJ0M16vhqcMte_Xwc-4y_jicAL4HYrpyOwr3Hf1f9RdGG7PJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103986555</pqid></control><display><type>article</type><title>Predicting extinction phenotype to optimize fear reduction</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Monfils, M. H. ; Lee, H. J. ; Keller, N. E. ; Roquet, R. F. ; Quevedo, S. ; Agee, L. ; Cofresi, R. ; Shumake, J.</creator><creatorcontrib>Monfils, M. H. ; Lee, H. J. ; Keller, N. E. ; Roquet, R. F. ; Quevedo, S. ; Agee, L. ; Cofresi, R. ; Shumake, J.</creatorcontrib><description>Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an individual might respond well to extinction prior to intervention could prove important to treatment outcomes. Here, we test the hypothesis that CO 2 reactivity predicts extinction phenotype in rats, and that variability in CO 2 reactivity as well as extinction long-term memory (LTM) significantly predicts orexin activity in the lateral hypothalamus (LH). Our results validate a rat model of CO 2 reactivity and show that subcomponents of behavioral reactivity following acute CO 2 exposure explain a significant portion of the variance in extinction LTM. Furthermore, we show evidence that variability in CO 2 reactivity is also significantly predictive of orexin activity in the LH, and that orexin activity, in turn, significantly accounts for LTM variance. Our findings open the possibility that we may be able to use CO 2 reactivity as a screening tool to determine if individuals are good candidates for an extinction/exposure-based approach.</description><identifier>ISSN: 0033-3158</identifier><identifier>EISSN: 1432-2072</identifier><identifier>DOI: 10.1007/s00213-018-5005-6</identifier><identifier>PMID: 30218131</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Animals ; Behavior, Animal ; Behaviorism (Psychology) ; Biomedical and Life Sciences ; Biomedicine ; Carbon dioxide ; Carbon Dioxide - pharmacology ; Conditioned stimulus ; Conditioning ; Conditioning, Psychological ; Exposure ; Extinction behavior ; Extinction, Psychological - drug effects ; Extinction, Psychological - physiology ; Fear ; Fear - drug effects ; Fear - physiology ; Fear conditioning ; Freezing Reaction, Cataleptic ; Hypothalamic Area, Lateral - metabolism ; Hypothalamus ; Hypothalamus (lateral) ; Individuality ; Long term memory ; Luteinizing hormone ; Male ; Memory, Long-Term ; Neurosciences ; Orexins ; Orexins - metabolism ; Original Investigation ; Pharmacology/Toxicology ; Phenotype ; Phenotypes ; Psychiatry ; Psychological aspects ; Rats ; Rats, Sprague-Dawley ; Reactivity ; Rodents ; Variability</subject><ispartof>Psychopharmacology, 2019-01, Vol.236 (1), p.99-110</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Psychopharmacology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-b9d66101a329404b79fed800312bafe51968db37879136b95f0b25bd17a3be813</citedby><cites>FETCH-LOGICAL-c603t-b9d66101a329404b79fed800312bafe51968db37879136b95f0b25bd17a3be813</cites><orcidid>0000-0001-8971-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00213-018-5005-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00213-018-5005-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30218131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monfils, M. H.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Keller, N. E.</creatorcontrib><creatorcontrib>Roquet, R. F.</creatorcontrib><creatorcontrib>Quevedo, S.</creatorcontrib><creatorcontrib>Agee, L.</creatorcontrib><creatorcontrib>Cofresi, R.</creatorcontrib><creatorcontrib>Shumake, J.</creatorcontrib><title>Predicting extinction phenotype to optimize fear reduction</title><title>Psychopharmacology</title><addtitle>Psychopharmacology</addtitle><addtitle>Psychopharmacology (Berl)</addtitle><description>Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an individual might respond well to extinction prior to intervention could prove important to treatment outcomes. Here, we test the hypothesis that CO 2 reactivity predicts extinction phenotype in rats, and that variability in CO 2 reactivity as well as extinction long-term memory (LTM) significantly predicts orexin activity in the lateral hypothalamus (LH). Our results validate a rat model of CO 2 reactivity and show that subcomponents of behavioral reactivity following acute CO 2 exposure explain a significant portion of the variance in extinction LTM. Furthermore, we show evidence that variability in CO 2 reactivity is also significantly predictive of orexin activity in the LH, and that orexin activity, in turn, significantly accounts for LTM variance. Our findings open the possibility that we may be able to use CO 2 reactivity as a screening tool to determine if individuals are good candidates for an extinction/exposure-based approach.</description><subject>Analysis</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Behaviorism (Psychology)</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Conditioned stimulus</subject><subject>Conditioning</subject><subject>Conditioning, Psychological</subject><subject>Exposure</subject><subject>Extinction behavior</subject><subject>Extinction, Psychological - drug effects</subject><subject>Extinction, Psychological - physiology</subject><subject>Fear</subject><subject>Fear - drug effects</subject><subject>Fear - physiology</subject><subject>Fear conditioning</subject><subject>Freezing Reaction, Cataleptic</subject><subject>Hypothalamic Area, Lateral - metabolism</subject><subject>Hypothalamus</subject><subject>Hypothalamus (lateral)</subject><subject>Individuality</subject><subject>Long term memory</subject><subject>Luteinizing hormone</subject><subject>Male</subject><subject>Memory, Long-Term</subject><subject>Neurosciences</subject><subject>Orexins</subject><subject>Orexins - metabolism</subject><subject>Original Investigation</subject><subject>Pharmacology/Toxicology</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Psychiatry</subject><subject>Psychological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactivity</subject><subject>Rodents</subject><subject>Variability</subject><issn>0033-3158</issn><issn>1432-2072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1TAQhS1ERW8vPAAbFIkNm7QzdpzELJCqikKlSrCAteUkk1tXiR3sBFGeHodb-oPAljWW_c3xjA9jLxGOEaA6iQAcRQ5Y5xJA5uUTtsFC8JxDxZ-yDYAQuUBZH7KjGK8hjaIunrFDkfJqFLhhbz8H6mw7W7fL6EcKaetdNl2R8_PNRNnsMz_NdrQ_KevJhCzxy2_oOTvozRDpxW3csq_n77-cfcwvP324ODu9zNsSxJw3qitLBDSCqwKKplI9dXUqDXljepKoyrprRFVXCkXZKNlDw2XTYWVEQ6nKLXu3152WZqSuJTcHM-gp2NGEG-2N1Y9vnL3SO_9dl0IhKpEE3twKBP9toTjr0caWhsE48kvUHEGCrArgCX39F3rtl-BSeyslVF1KKe-pnRlIW9f79G67iupTWQkl0lq1jv9BpdnRaFvvqLfp_FEC7hPa4GMM1N_1iKBXw_XecJ0M16vhqcMte_Xwc-4y_jicAL4HYrpyOwr3Hf1f9RdGG7PJ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Monfils, M. H.</creator><creator>Lee, H. J.</creator><creator>Keller, N. E.</creator><creator>Roquet, R. F.</creator><creator>Quevedo, S.</creator><creator>Agee, L.</creator><creator>Cofresi, R.</creator><creator>Shumake, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8971-6651</orcidid></search><sort><creationdate>20190101</creationdate><title>Predicting extinction phenotype to optimize fear reduction</title><author>Monfils, M. H. ; Lee, H. J. ; Keller, N. E. ; Roquet, R. F. ; Quevedo, S. ; Agee, L. ; Cofresi, R. ; Shumake, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-b9d66101a329404b79fed800312bafe51968db37879136b95f0b25bd17a3be813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Behaviorism (Psychology)</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Conditioned stimulus</topic><topic>Conditioning</topic><topic>Conditioning, Psychological</topic><topic>Exposure</topic><topic>Extinction behavior</topic><topic>Extinction, Psychological - drug effects</topic><topic>Extinction, Psychological - physiology</topic><topic>Fear</topic><topic>Fear - drug effects</topic><topic>Fear - physiology</topic><topic>Fear conditioning</topic><topic>Freezing Reaction, Cataleptic</topic><topic>Hypothalamic Area, Lateral - metabolism</topic><topic>Hypothalamus</topic><topic>Hypothalamus (lateral)</topic><topic>Individuality</topic><topic>Long term memory</topic><topic>Luteinizing hormone</topic><topic>Male</topic><topic>Memory, Long-Term</topic><topic>Neurosciences</topic><topic>Orexins</topic><topic>Orexins - metabolism</topic><topic>Original Investigation</topic><topic>Pharmacology/Toxicology</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Psychiatry</topic><topic>Psychological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactivity</topic><topic>Rodents</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monfils, M. H.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Keller, N. E.</creatorcontrib><creatorcontrib>Roquet, R. F.</creatorcontrib><creatorcontrib>Quevedo, S.</creatorcontrib><creatorcontrib>Agee, L.</creatorcontrib><creatorcontrib>Cofresi, R.</creatorcontrib><creatorcontrib>Shumake, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychopharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monfils, M. H.</au><au>Lee, H. J.</au><au>Keller, N. E.</au><au>Roquet, R. F.</au><au>Quevedo, S.</au><au>Agee, L.</au><au>Cofresi, R.</au><au>Shumake, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting extinction phenotype to optimize fear reduction</atitle><jtitle>Psychopharmacology</jtitle><stitle>Psychopharmacology</stitle><addtitle>Psychopharmacology (Berl)</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>236</volume><issue>1</issue><spage>99</spage><epage>110</epage><pages>99-110</pages><issn>0033-3158</issn><eissn>1432-2072</eissn><abstract>Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an individual might respond well to extinction prior to intervention could prove important to treatment outcomes. Here, we test the hypothesis that CO 2 reactivity predicts extinction phenotype in rats, and that variability in CO 2 reactivity as well as extinction long-term memory (LTM) significantly predicts orexin activity in the lateral hypothalamus (LH). Our results validate a rat model of CO 2 reactivity and show that subcomponents of behavioral reactivity following acute CO 2 exposure explain a significant portion of the variance in extinction LTM. Furthermore, we show evidence that variability in CO 2 reactivity is also significantly predictive of orexin activity in the LH, and that orexin activity, in turn, significantly accounts for LTM variance. Our findings open the possibility that we may be able to use CO 2 reactivity as a screening tool to determine if individuals are good candidates for an extinction/exposure-based approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30218131</pmid><doi>10.1007/s00213-018-5005-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8971-6651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-3158
ispartof Psychopharmacology, 2019-01, Vol.236 (1), p.99-110
issn 0033-3158
1432-2072
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6391193
source MEDLINE; SpringerNature Journals
subjects Analysis
Animals
Behavior, Animal
Behaviorism (Psychology)
Biomedical and Life Sciences
Biomedicine
Carbon dioxide
Carbon Dioxide - pharmacology
Conditioned stimulus
Conditioning
Conditioning, Psychological
Exposure
Extinction behavior
Extinction, Psychological - drug effects
Extinction, Psychological - physiology
Fear
Fear - drug effects
Fear - physiology
Fear conditioning
Freezing Reaction, Cataleptic
Hypothalamic Area, Lateral - metabolism
Hypothalamus
Hypothalamus (lateral)
Individuality
Long term memory
Luteinizing hormone
Male
Memory, Long-Term
Neurosciences
Orexins
Orexins - metabolism
Original Investigation
Pharmacology/Toxicology
Phenotype
Phenotypes
Psychiatry
Psychological aspects
Rats
Rats, Sprague-Dawley
Reactivity
Rodents
Variability
title Predicting extinction phenotype to optimize fear reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20extinction%20phenotype%20to%20optimize%20fear%20reduction&rft.jtitle=Psychopharmacology&rft.au=Monfils,%20M.%20H.&rft.date=2019-01-01&rft.volume=236&rft.issue=1&rft.spage=99&rft.epage=110&rft.pages=99-110&rft.issn=0033-3158&rft.eissn=1432-2072&rft_id=info:doi/10.1007/s00213-018-5005-6&rft_dat=%3Cgale_pubme%3EA573937392%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103986555&rft_id=info:pmid/30218131&rft_galeid=A573937392&rfr_iscdi=true