Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing
Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ a...
Gespeichert in:
Veröffentlicht in: | Indoor air 2018-05, Vol.28 (3), p.459-468 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 3 |
container_start_page | 459 |
container_title | Indoor air |
container_volume | 28 |
creator | Underhill, L. J. Fabian, M. P. Vermeer, K. Sandel, M. Adamkiewicz, G. Leibler, J. H. Levy, J. I. |
description | Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits. |
doi_str_mv | 10.1111/ina.12446 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6386461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025901596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4436-726948a24d1988ead358e4d906f79206d86f8703dc2bbd36b3503098d6d145c33</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoNY7LW68A_IgBtdTHvyMZlkI5TiR6HVja5chNxJcm9KJqnJTMvs_An-Rn-JqbctWjCbAzkPD-_hRegFhkNc35GP-hATxvgjtMIcoAXOxWO0AgldyyXr99HTUi4AcE8lfYL2iSQCOoxX6Nt5Mjb4uGmmrW2yLT54G4elSa6x0ebN8uvHT-ucH-r3VIEpJ-en0vjYhHRdlz4OabTNOIfJOz36sDTbNJeqfIb2nA7FPr-dB-jr-3dfTj62Z58_nJ4cn7UDY5S3PakRhSbMYCmE1YZ2wjIjgbteEuBGcCd6oGYg67WhfE07oCCF4QazbqD0AL3deS_n9WjNUINmHdRl9qPOi0raq3830W_VJl0pTgVnHFfB61tBTt9nWyY1-jLYEHS09RRVc2HoGMG8oq8eoBdpzrGepwiQTgLu5A31ZkcNOZWSrbsPg0HdVKZqZepPZZV9-Xf6e_Kuowoc7YBrH-zyf5M6_XS8U_4Gsd6i0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025901596</pqid></control><display><type>article</type><title>Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Underhill, L. J. ; Fabian, M. P. ; Vermeer, K. ; Sandel, M. ; Adamkiewicz, G. ; Leibler, J. H. ; Levy, J. I.</creator><creatorcontrib>Underhill, L. J. ; Fabian, M. P. ; Vermeer, K. ; Sandel, M. ; Adamkiewicz, G. ; Leibler, J. H. ; Levy, J. I.</creatorcontrib><description>Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.</description><identifier>ISSN: 0905-6947</identifier><identifier>ISSN: 1600-0668</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.12446</identifier><identifier>PMID: 29280511</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Air flow ; Air Pollutants - analysis ; Air Pollution, Indoor - analysis ; Air quality ; Air quality measurements ; Boston ; building simulation ; Cigarette smoking ; Computer simulation ; Conservation of Energy Resources - methods ; CONTAM ; Cooking ; Drug addiction ; Energy efficiency ; energy‐efficient retrofits ; Environmental Exposure - analysis ; Filtration ; healthy housing ; Housing ; Humans ; Income ; Indoor air pollution ; Indoor air quality ; Indoor environments ; indoor retrofit resiliency ; multifamily housing ; Multiple dwellings ; Nitrogen dioxide ; Nitrogen Dioxide - analysis ; Particulate matter ; Particulate Matter - analysis ; Poverty ; Residential buildings ; Residential energy ; Resilience ; Retrofitting ; Smoking ; Ventilation ; Ventilation - methods ; Weather</subject><ispartof>Indoor air, 2018-05, Vol.28 (3), p.459-468</ispartof><rights>2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><rights>2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons A/S</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4436-726948a24d1988ead358e4d906f79206d86f8703dc2bbd36b3503098d6d145c33</citedby><cites>FETCH-LOGICAL-c4436-726948a24d1988ead358e4d906f79206d86f8703dc2bbd36b3503098d6d145c33</cites><orcidid>0000-0002-1511-812X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.12446$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.12446$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29280511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Underhill, L. J.</creatorcontrib><creatorcontrib>Fabian, M. P.</creatorcontrib><creatorcontrib>Vermeer, K.</creatorcontrib><creatorcontrib>Sandel, M.</creatorcontrib><creatorcontrib>Adamkiewicz, G.</creatorcontrib><creatorcontrib>Leibler, J. H.</creatorcontrib><creatorcontrib>Levy, J. I.</creatorcontrib><title>Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing</title><title>Indoor air</title><addtitle>Indoor Air</addtitle><description>Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.</description><subject>Air flow</subject><subject>Air Pollutants - analysis</subject><subject>Air Pollution, Indoor - analysis</subject><subject>Air quality</subject><subject>Air quality measurements</subject><subject>Boston</subject><subject>building simulation</subject><subject>Cigarette smoking</subject><subject>Computer simulation</subject><subject>Conservation of Energy Resources - methods</subject><subject>CONTAM</subject><subject>Cooking</subject><subject>Drug addiction</subject><subject>Energy efficiency</subject><subject>energy‐efficient retrofits</subject><subject>Environmental Exposure - analysis</subject><subject>Filtration</subject><subject>healthy housing</subject><subject>Housing</subject><subject>Humans</subject><subject>Income</subject><subject>Indoor air pollution</subject><subject>Indoor air quality</subject><subject>Indoor environments</subject><subject>indoor retrofit resiliency</subject><subject>multifamily housing</subject><subject>Multiple dwellings</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen Dioxide - analysis</subject><subject>Particulate matter</subject><subject>Particulate Matter - analysis</subject><subject>Poverty</subject><subject>Residential buildings</subject><subject>Residential energy</subject><subject>Resilience</subject><subject>Retrofitting</subject><subject>Smoking</subject><subject>Ventilation</subject><subject>Ventilation - methods</subject><subject>Weather</subject><issn>0905-6947</issn><issn>1600-0668</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1rFTEUhoNY7LW68A_IgBtdTHvyMZlkI5TiR6HVja5chNxJcm9KJqnJTMvs_An-Rn-JqbctWjCbAzkPD-_hRegFhkNc35GP-hATxvgjtMIcoAXOxWO0AgldyyXr99HTUi4AcE8lfYL2iSQCOoxX6Nt5Mjb4uGmmrW2yLT54G4elSa6x0ebN8uvHT-ucH-r3VIEpJ-en0vjYhHRdlz4OabTNOIfJOz36sDTbNJeqfIb2nA7FPr-dB-jr-3dfTj62Z58_nJ4cn7UDY5S3PakRhSbMYCmE1YZ2wjIjgbteEuBGcCd6oGYg67WhfE07oCCF4QazbqD0AL3deS_n9WjNUINmHdRl9qPOi0raq3830W_VJl0pTgVnHFfB61tBTt9nWyY1-jLYEHS09RRVc2HoGMG8oq8eoBdpzrGepwiQTgLu5A31ZkcNOZWSrbsPg0HdVKZqZepPZZV9-Xf6e_Kuowoc7YBrH-zyf5M6_XS8U_4Gsd6i0w</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Underhill, L. J.</creator><creator>Fabian, M. P.</creator><creator>Vermeer, K.</creator><creator>Sandel, M.</creator><creator>Adamkiewicz, G.</creator><creator>Leibler, J. H.</creator><creator>Levy, J. I.</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1511-812X</orcidid></search><sort><creationdate>201805</creationdate><title>Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing</title><author>Underhill, L. J. ; Fabian, M. P. ; Vermeer, K. ; Sandel, M. ; Adamkiewicz, G. ; Leibler, J. H. ; Levy, J. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4436-726948a24d1988ead358e4d906f79206d86f8703dc2bbd36b3503098d6d145c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air flow</topic><topic>Air Pollutants - analysis</topic><topic>Air Pollution, Indoor - analysis</topic><topic>Air quality</topic><topic>Air quality measurements</topic><topic>Boston</topic><topic>building simulation</topic><topic>Cigarette smoking</topic><topic>Computer simulation</topic><topic>Conservation of Energy Resources - methods</topic><topic>CONTAM</topic><topic>Cooking</topic><topic>Drug addiction</topic><topic>Energy efficiency</topic><topic>energy‐efficient retrofits</topic><topic>Environmental Exposure - analysis</topic><topic>Filtration</topic><topic>healthy housing</topic><topic>Housing</topic><topic>Humans</topic><topic>Income</topic><topic>Indoor air pollution</topic><topic>Indoor air quality</topic><topic>Indoor environments</topic><topic>indoor retrofit resiliency</topic><topic>multifamily housing</topic><topic>Multiple dwellings</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen Dioxide - analysis</topic><topic>Particulate matter</topic><topic>Particulate Matter - analysis</topic><topic>Poverty</topic><topic>Residential buildings</topic><topic>Residential energy</topic><topic>Resilience</topic><topic>Retrofitting</topic><topic>Smoking</topic><topic>Ventilation</topic><topic>Ventilation - methods</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Underhill, L. J.</creatorcontrib><creatorcontrib>Fabian, M. P.</creatorcontrib><creatorcontrib>Vermeer, K.</creatorcontrib><creatorcontrib>Sandel, M.</creatorcontrib><creatorcontrib>Adamkiewicz, G.</creatorcontrib><creatorcontrib>Leibler, J. H.</creatorcontrib><creatorcontrib>Levy, J. I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Underhill, L. J.</au><au>Fabian, M. P.</au><au>Vermeer, K.</au><au>Sandel, M.</au><au>Adamkiewicz, G.</au><au>Leibler, J. H.</au><au>Levy, J. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing</atitle><jtitle>Indoor air</jtitle><addtitle>Indoor Air</addtitle><date>2018-05</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>459</spage><epage>468</epage><pages>459-468</pages><issn>0905-6947</issn><issn>1600-0668</issn><eissn>1600-0668</eissn><abstract>Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>29280511</pmid><doi>10.1111/ina.12446</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1511-812X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0905-6947 |
ispartof | Indoor air, 2018-05, Vol.28 (3), p.459-468 |
issn | 0905-6947 1600-0668 1600-0668 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6386461 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Air flow Air Pollutants - analysis Air Pollution, Indoor - analysis Air quality Air quality measurements Boston building simulation Cigarette smoking Computer simulation Conservation of Energy Resources - methods CONTAM Cooking Drug addiction Energy efficiency energy‐efficient retrofits Environmental Exposure - analysis Filtration healthy housing Housing Humans Income Indoor air pollution Indoor air quality Indoor environments indoor retrofit resiliency multifamily housing Multiple dwellings Nitrogen dioxide Nitrogen Dioxide - analysis Particulate matter Particulate Matter - analysis Poverty Residential buildings Residential energy Resilience Retrofitting Smoking Ventilation Ventilation - methods Weather |
title | Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20resiliency%20of%20energy%E2%80%90efficient%20retrofits%20in%20low%E2%80%90income%20multifamily%20housing&rft.jtitle=Indoor%20air&rft.au=Underhill,%20L.%20J.&rft.date=2018-05&rft.volume=28&rft.issue=3&rft.spage=459&rft.epage=468&rft.pages=459-468&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.12446&rft_dat=%3Cproquest_pubme%3E2025901596%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025901596&rft_id=info:pmid/29280511&rfr_iscdi=true |