Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing

Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indoor air 2018-05, Vol.28 (3), p.459-468
Hauptverfasser: Underhill, L. J., Fabian, M. P., Vermeer, K., Sandel, M., Adamkiewicz, G., Leibler, J. H., Levy, J. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 3
container_start_page 459
container_title Indoor air
container_volume 28
creator Underhill, L. J.
Fabian, M. P.
Vermeer, K.
Sandel, M.
Adamkiewicz, G.
Leibler, J. H.
Levy, J. I.
description Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.
doi_str_mv 10.1111/ina.12446
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6386461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025901596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4436-726948a24d1988ead358e4d906f79206d86f8703dc2bbd36b3503098d6d145c33</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoNY7LW68A_IgBtdTHvyMZlkI5TiR6HVja5chNxJcm9KJqnJTMvs_An-Rn-JqbctWjCbAzkPD-_hRegFhkNc35GP-hATxvgjtMIcoAXOxWO0AgldyyXr99HTUi4AcE8lfYL2iSQCOoxX6Nt5Mjb4uGmmrW2yLT54G4elSa6x0ebN8uvHT-ucH-r3VIEpJ-en0vjYhHRdlz4OabTNOIfJOz36sDTbNJeqfIb2nA7FPr-dB-jr-3dfTj62Z58_nJ4cn7UDY5S3PakRhSbMYCmE1YZ2wjIjgbteEuBGcCd6oGYg67WhfE07oCCF4QazbqD0AL3deS_n9WjNUINmHdRl9qPOi0raq3830W_VJl0pTgVnHFfB61tBTt9nWyY1-jLYEHS09RRVc2HoGMG8oq8eoBdpzrGepwiQTgLu5A31ZkcNOZWSrbsPg0HdVKZqZepPZZV9-Xf6e_Kuowoc7YBrH-zyf5M6_XS8U_4Gsd6i0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025901596</pqid></control><display><type>article</type><title>Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Underhill, L. J. ; Fabian, M. P. ; Vermeer, K. ; Sandel, M. ; Adamkiewicz, G. ; Leibler, J. H. ; Levy, J. I.</creator><creatorcontrib>Underhill, L. J. ; Fabian, M. P. ; Vermeer, K. ; Sandel, M. ; Adamkiewicz, G. ; Leibler, J. H. ; Levy, J. I.</creatorcontrib><description>Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.</description><identifier>ISSN: 0905-6947</identifier><identifier>ISSN: 1600-0668</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.12446</identifier><identifier>PMID: 29280511</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Air flow ; Air Pollutants - analysis ; Air Pollution, Indoor - analysis ; Air quality ; Air quality measurements ; Boston ; building simulation ; Cigarette smoking ; Computer simulation ; Conservation of Energy Resources - methods ; CONTAM ; Cooking ; Drug addiction ; Energy efficiency ; energy‐efficient retrofits ; Environmental Exposure - analysis ; Filtration ; healthy housing ; Housing ; Humans ; Income ; Indoor air pollution ; Indoor air quality ; Indoor environments ; indoor retrofit resiliency ; multifamily housing ; Multiple dwellings ; Nitrogen dioxide ; Nitrogen Dioxide - analysis ; Particulate matter ; Particulate Matter - analysis ; Poverty ; Residential buildings ; Residential energy ; Resilience ; Retrofitting ; Smoking ; Ventilation ; Ventilation - methods ; Weather</subject><ispartof>Indoor air, 2018-05, Vol.28 (3), p.459-468</ispartof><rights>2017 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2017 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4436-726948a24d1988ead358e4d906f79206d86f8703dc2bbd36b3503098d6d145c33</citedby><cites>FETCH-LOGICAL-c4436-726948a24d1988ead358e4d906f79206d86f8703dc2bbd36b3503098d6d145c33</cites><orcidid>0000-0002-1511-812X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.12446$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.12446$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29280511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Underhill, L. J.</creatorcontrib><creatorcontrib>Fabian, M. P.</creatorcontrib><creatorcontrib>Vermeer, K.</creatorcontrib><creatorcontrib>Sandel, M.</creatorcontrib><creatorcontrib>Adamkiewicz, G.</creatorcontrib><creatorcontrib>Leibler, J. H.</creatorcontrib><creatorcontrib>Levy, J. I.</creatorcontrib><title>Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing</title><title>Indoor air</title><addtitle>Indoor Air</addtitle><description>Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.</description><subject>Air flow</subject><subject>Air Pollutants - analysis</subject><subject>Air Pollution, Indoor - analysis</subject><subject>Air quality</subject><subject>Air quality measurements</subject><subject>Boston</subject><subject>building simulation</subject><subject>Cigarette smoking</subject><subject>Computer simulation</subject><subject>Conservation of Energy Resources - methods</subject><subject>CONTAM</subject><subject>Cooking</subject><subject>Drug addiction</subject><subject>Energy efficiency</subject><subject>energy‐efficient retrofits</subject><subject>Environmental Exposure - analysis</subject><subject>Filtration</subject><subject>healthy housing</subject><subject>Housing</subject><subject>Humans</subject><subject>Income</subject><subject>Indoor air pollution</subject><subject>Indoor air quality</subject><subject>Indoor environments</subject><subject>indoor retrofit resiliency</subject><subject>multifamily housing</subject><subject>Multiple dwellings</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen Dioxide - analysis</subject><subject>Particulate matter</subject><subject>Particulate Matter - analysis</subject><subject>Poverty</subject><subject>Residential buildings</subject><subject>Residential energy</subject><subject>Resilience</subject><subject>Retrofitting</subject><subject>Smoking</subject><subject>Ventilation</subject><subject>Ventilation - methods</subject><subject>Weather</subject><issn>0905-6947</issn><issn>1600-0668</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1rFTEUhoNY7LW68A_IgBtdTHvyMZlkI5TiR6HVja5chNxJcm9KJqnJTMvs_An-Rn-JqbctWjCbAzkPD-_hRegFhkNc35GP-hATxvgjtMIcoAXOxWO0AgldyyXr99HTUi4AcE8lfYL2iSQCOoxX6Nt5Mjb4uGmmrW2yLT54G4elSa6x0ebN8uvHT-ucH-r3VIEpJ-en0vjYhHRdlz4OabTNOIfJOz36sDTbNJeqfIb2nA7FPr-dB-jr-3dfTj62Z58_nJ4cn7UDY5S3PakRhSbMYCmE1YZ2wjIjgbteEuBGcCd6oGYg67WhfE07oCCF4QazbqD0AL3deS_n9WjNUINmHdRl9qPOi0raq3830W_VJl0pTgVnHFfB61tBTt9nWyY1-jLYEHS09RRVc2HoGMG8oq8eoBdpzrGepwiQTgLu5A31ZkcNOZWSrbsPg0HdVKZqZepPZZV9-Xf6e_Kuowoc7YBrH-zyf5M6_XS8U_4Gsd6i0w</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Underhill, L. J.</creator><creator>Fabian, M. P.</creator><creator>Vermeer, K.</creator><creator>Sandel, M.</creator><creator>Adamkiewicz, G.</creator><creator>Leibler, J. H.</creator><creator>Levy, J. I.</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1511-812X</orcidid></search><sort><creationdate>201805</creationdate><title>Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing</title><author>Underhill, L. J. ; Fabian, M. P. ; Vermeer, K. ; Sandel, M. ; Adamkiewicz, G. ; Leibler, J. H. ; Levy, J. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4436-726948a24d1988ead358e4d906f79206d86f8703dc2bbd36b3503098d6d145c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air flow</topic><topic>Air Pollutants - analysis</topic><topic>Air Pollution, Indoor - analysis</topic><topic>Air quality</topic><topic>Air quality measurements</topic><topic>Boston</topic><topic>building simulation</topic><topic>Cigarette smoking</topic><topic>Computer simulation</topic><topic>Conservation of Energy Resources - methods</topic><topic>CONTAM</topic><topic>Cooking</topic><topic>Drug addiction</topic><topic>Energy efficiency</topic><topic>energy‐efficient retrofits</topic><topic>Environmental Exposure - analysis</topic><topic>Filtration</topic><topic>healthy housing</topic><topic>Housing</topic><topic>Humans</topic><topic>Income</topic><topic>Indoor air pollution</topic><topic>Indoor air quality</topic><topic>Indoor environments</topic><topic>indoor retrofit resiliency</topic><topic>multifamily housing</topic><topic>Multiple dwellings</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen Dioxide - analysis</topic><topic>Particulate matter</topic><topic>Particulate Matter - analysis</topic><topic>Poverty</topic><topic>Residential buildings</topic><topic>Residential energy</topic><topic>Resilience</topic><topic>Retrofitting</topic><topic>Smoking</topic><topic>Ventilation</topic><topic>Ventilation - methods</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Underhill, L. J.</creatorcontrib><creatorcontrib>Fabian, M. P.</creatorcontrib><creatorcontrib>Vermeer, K.</creatorcontrib><creatorcontrib>Sandel, M.</creatorcontrib><creatorcontrib>Adamkiewicz, G.</creatorcontrib><creatorcontrib>Leibler, J. H.</creatorcontrib><creatorcontrib>Levy, J. I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Underhill, L. J.</au><au>Fabian, M. P.</au><au>Vermeer, K.</au><au>Sandel, M.</au><au>Adamkiewicz, G.</au><au>Leibler, J. H.</au><au>Levy, J. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing</atitle><jtitle>Indoor air</jtitle><addtitle>Indoor Air</addtitle><date>2018-05</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>459</spage><epage>468</epage><pages>459-468</pages><issn>0905-6947</issn><issn>1600-0668</issn><eissn>1600-0668</eissn><abstract>Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>29280511</pmid><doi>10.1111/ina.12446</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1511-812X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0905-6947
ispartof Indoor air, 2018-05, Vol.28 (3), p.459-468
issn 0905-6947
1600-0668
1600-0668
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6386461
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Air flow
Air Pollutants - analysis
Air Pollution, Indoor - analysis
Air quality
Air quality measurements
Boston
building simulation
Cigarette smoking
Computer simulation
Conservation of Energy Resources - methods
CONTAM
Cooking
Drug addiction
Energy efficiency
energy‐efficient retrofits
Environmental Exposure - analysis
Filtration
healthy housing
Housing
Humans
Income
Indoor air pollution
Indoor air quality
Indoor environments
indoor retrofit resiliency
multifamily housing
Multiple dwellings
Nitrogen dioxide
Nitrogen Dioxide - analysis
Particulate matter
Particulate Matter - analysis
Poverty
Residential buildings
Residential energy
Resilience
Retrofitting
Smoking
Ventilation
Ventilation - methods
Weather
title Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20resiliency%20of%20energy%E2%80%90efficient%20retrofits%20in%20low%E2%80%90income%20multifamily%20housing&rft.jtitle=Indoor%20air&rft.au=Underhill,%20L.%20J.&rft.date=2018-05&rft.volume=28&rft.issue=3&rft.spage=459&rft.epage=468&rft.pages=459-468&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.12446&rft_dat=%3Cproquest_pubme%3E2025901596%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025901596&rft_id=info:pmid/29280511&rfr_iscdi=true