Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice

Summary Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2019-03, Vol.17 (3), p.650-664
Hauptverfasser: Miao, Jun, Yang, Zefeng, Zhang, Dongping, Wang, Yuzhu, Xu, Mengbin, Zhou, Lihui, Wang, Jun, Wu, Shujun, Yao, Youli, Du, Xi, Gu, Fangfei, Gong, Zhiyun, Gu, Minghong, Liang, Guohua, Zhou, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 3
container_start_page 650
container_title Plant biotechnology journal
container_volume 17
creator Miao, Jun
Yang, Zefeng
Zhang, Dongping
Wang, Yuzhu
Xu, Mengbin
Zhou, Lihui
Wang, Jun
Wu, Shujun
Yao, Youli
Du, Xi
Gu, Fangfei
Gong, Zhiyun
Gu, Minghong
Liang, Guohua
Zhou, Yong
description Summary Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.
doi_str_mv 10.1111/pbi.13005
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6381795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733295911</galeid><sourcerecordid>A733295911</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4085-da7b4ab06bdc504d1efcc56c7b736838cc84816e40dc36cf678116c93d5b2c973</originalsourceid><addsrcrecordid>eNpdUk2PFCEQ7RiN-6EH_4Ah8eJhZxaaBrovJrsbHTdZozF6JnRRPcOmB1rodjNe9kf5P_xNMjPrRIUDBe_Vg6JeUbxgdM7yOB9aN2ecUvGoOGaVVDMlRfn4EFfVUXGS0i2lJZNCPi2OOGWSclkeF_cfptGMLngSOvJ5sSjPyN3KwYqgh2AxEUPGzYDkkqxwxBjG6NYYHZAFGfIOnSe_fpI0tZN34xlxHiKalPOW0WQsuR9IjLdk47C32xQ7we66DGYZfFY86Uyf8PnDelp8fff2y9X72c3HxfXVxc1sWdFazKxRbWVaKlsLglaWYQcgJKhWcVnzGqCuaiaxoha4hE6qmjEJDbeiLaFR_LR4s9cdpnaNFtCP0fR6yOWYuNHBOP0v4t1KL8N3LXnNVCOywOsHgRi-TZhGvXYJsO-NxzAlXdJGiYbndmTqq_-ot2GKPpenS1ZzUTPKt4LzPWtpetTOd_lvDeRpce0geOxcPr9QnJeNaHayL_8u4fD2P83MhPM94S5nbg44o3rrEp1doncu0Z8ur3cB_w1rILAm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183581035</pqid></control><display><type>article</type><title>Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Miao, Jun ; Yang, Zefeng ; Zhang, Dongping ; Wang, Yuzhu ; Xu, Mengbin ; Zhou, Lihui ; Wang, Jun ; Wu, Shujun ; Yao, Youli ; Du, Xi ; Gu, Fangfei ; Gong, Zhiyun ; Gu, Minghong ; Liang, Guohua ; Zhou, Yong</creator><creatorcontrib>Miao, Jun ; Yang, Zefeng ; Zhang, Dongping ; Wang, Yuzhu ; Xu, Mengbin ; Zhou, Lihui ; Wang, Jun ; Wu, Shujun ; Yao, Youli ; Du, Xi ; Gu, Fangfei ; Gong, Zhiyun ; Gu, Minghong ; Liang, Guohua ; Zhou, Yong</creatorcontrib><description>Summary Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13005</identifier><identifier>PMID: 30160362</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Cellular signal transduction ; CRISPR ; CRISPR-Cas Systems ; Crop production ; Crop yield ; Crop yields ; Edible Grain - genetics ; Edible Grain - growth &amp; development ; G proteins ; Gene Editing - methods ; Gene Expression Regulation, Plant ; Genetic aspects ; Grain size ; GTP-Binding Protein gamma Subunits - genetics ; GTP-Binding Protein gamma Subunits - physiology ; heterotrimeric G protein ; Molecular machines ; Mutation ; Mutation - genetics ; Oryza ; Oryza - genetics ; Oryza - growth &amp; development ; Particle size ; Plant biomass ; Plant growth ; Plant Proteins - genetics ; Plant Proteins - physiology ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - growth &amp; development ; Proteins ; RGG2 ; Rice ; Seeds ; Sheaths ; Signal transduction ; Switches ; Weight ; yield production ; α-Amylase</subject><ispartof>Plant biotechnology journal, 2019-03, Vol.17 (3), p.650-664</ispartof><rights>2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0434-1617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13005$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13005$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30160362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Jun</creatorcontrib><creatorcontrib>Yang, Zefeng</creatorcontrib><creatorcontrib>Zhang, Dongping</creatorcontrib><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Xu, Mengbin</creatorcontrib><creatorcontrib>Zhou, Lihui</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wu, Shujun</creatorcontrib><creatorcontrib>Yao, Youli</creatorcontrib><creatorcontrib>Du, Xi</creatorcontrib><creatorcontrib>Gu, Fangfei</creatorcontrib><creatorcontrib>Gong, Zhiyun</creatorcontrib><creatorcontrib>Gu, Minghong</creatorcontrib><creatorcontrib>Liang, Guohua</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><title>Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.</description><subject>Cellular signal transduction</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Edible Grain - genetics</subject><subject>Edible Grain - growth &amp; development</subject><subject>G proteins</subject><subject>Gene Editing - methods</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic aspects</subject><subject>Grain size</subject><subject>GTP-Binding Protein gamma Subunits - genetics</subject><subject>GTP-Binding Protein gamma Subunits - physiology</subject><subject>heterotrimeric G protein</subject><subject>Molecular machines</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Oryza</subject><subject>Oryza - genetics</subject><subject>Oryza - growth &amp; development</subject><subject>Particle size</subject><subject>Plant biomass</subject><subject>Plant growth</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - physiology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - growth &amp; development</subject><subject>Proteins</subject><subject>RGG2</subject><subject>Rice</subject><subject>Seeds</subject><subject>Sheaths</subject><subject>Signal transduction</subject><subject>Switches</subject><subject>Weight</subject><subject>yield production</subject><subject>α-Amylase</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdUk2PFCEQ7RiN-6EH_4Ah8eJhZxaaBrovJrsbHTdZozF6JnRRPcOmB1rodjNe9kf5P_xNMjPrRIUDBe_Vg6JeUbxgdM7yOB9aN2ecUvGoOGaVVDMlRfn4EFfVUXGS0i2lJZNCPi2OOGWSclkeF_cfptGMLngSOvJ5sSjPyN3KwYqgh2AxEUPGzYDkkqxwxBjG6NYYHZAFGfIOnSe_fpI0tZN34xlxHiKalPOW0WQsuR9IjLdk47C32xQ7we66DGYZfFY86Uyf8PnDelp8fff2y9X72c3HxfXVxc1sWdFazKxRbWVaKlsLglaWYQcgJKhWcVnzGqCuaiaxoha4hE6qmjEJDbeiLaFR_LR4s9cdpnaNFtCP0fR6yOWYuNHBOP0v4t1KL8N3LXnNVCOywOsHgRi-TZhGvXYJsO-NxzAlXdJGiYbndmTqq_-ot2GKPpenS1ZzUTPKt4LzPWtpetTOd_lvDeRpce0geOxcPr9QnJeNaHayL_8u4fD2P83MhPM94S5nbg44o3rrEp1doncu0Z8ur3cB_w1rILAm</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Miao, Jun</creator><creator>Yang, Zefeng</creator><creator>Zhang, Dongping</creator><creator>Wang, Yuzhu</creator><creator>Xu, Mengbin</creator><creator>Zhou, Lihui</creator><creator>Wang, Jun</creator><creator>Wu, Shujun</creator><creator>Yao, Youli</creator><creator>Du, Xi</creator><creator>Gu, Fangfei</creator><creator>Gong, Zhiyun</creator><creator>Gu, Minghong</creator><creator>Liang, Guohua</creator><creator>Zhou, Yong</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0434-1617</orcidid></search><sort><creationdate>201903</creationdate><title>Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice</title><author>Miao, Jun ; Yang, Zefeng ; Zhang, Dongping ; Wang, Yuzhu ; Xu, Mengbin ; Zhou, Lihui ; Wang, Jun ; Wu, Shujun ; Yao, Youli ; Du, Xi ; Gu, Fangfei ; Gong, Zhiyun ; Gu, Minghong ; Liang, Guohua ; Zhou, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4085-da7b4ab06bdc504d1efcc56c7b736838cc84816e40dc36cf678116c93d5b2c973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cellular signal transduction</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Edible Grain - genetics</topic><topic>Edible Grain - growth &amp; development</topic><topic>G proteins</topic><topic>Gene Editing - methods</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic aspects</topic><topic>Grain size</topic><topic>GTP-Binding Protein gamma Subunits - genetics</topic><topic>GTP-Binding Protein gamma Subunits - physiology</topic><topic>heterotrimeric G protein</topic><topic>Molecular machines</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Oryza</topic><topic>Oryza - genetics</topic><topic>Oryza - growth &amp; development</topic><topic>Particle size</topic><topic>Plant biomass</topic><topic>Plant growth</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - physiology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - growth &amp; development</topic><topic>Proteins</topic><topic>RGG2</topic><topic>Rice</topic><topic>Seeds</topic><topic>Sheaths</topic><topic>Signal transduction</topic><topic>Switches</topic><topic>Weight</topic><topic>yield production</topic><topic>α-Amylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Jun</creatorcontrib><creatorcontrib>Yang, Zefeng</creatorcontrib><creatorcontrib>Zhang, Dongping</creatorcontrib><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Xu, Mengbin</creatorcontrib><creatorcontrib>Zhou, Lihui</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wu, Shujun</creatorcontrib><creatorcontrib>Yao, Youli</creatorcontrib><creatorcontrib>Du, Xi</creatorcontrib><creatorcontrib>Gu, Fangfei</creatorcontrib><creatorcontrib>Gong, Zhiyun</creatorcontrib><creatorcontrib>Gu, Minghong</creatorcontrib><creatorcontrib>Liang, Guohua</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Jun</au><au>Yang, Zefeng</au><au>Zhang, Dongping</au><au>Wang, Yuzhu</au><au>Xu, Mengbin</au><au>Zhou, Lihui</au><au>Wang, Jun</au><au>Wu, Shujun</au><au>Yao, Youli</au><au>Du, Xi</au><au>Gu, Fangfei</au><au>Gong, Zhiyun</au><au>Gu, Minghong</au><au>Liang, Guohua</au><au>Zhou, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2019-03</date><risdate>2019</risdate><volume>17</volume><issue>3</issue><spage>650</spage><epage>664</epage><pages>650-664</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30160362</pmid><doi>10.1111/pbi.13005</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0434-1617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2019-03, Vol.17 (3), p.650-664
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6381795
source MEDLINE; Wiley Online Library; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Cellular signal transduction
CRISPR
CRISPR-Cas Systems
Crop production
Crop yield
Crop yields
Edible Grain - genetics
Edible Grain - growth & development
G proteins
Gene Editing - methods
Gene Expression Regulation, Plant
Genetic aspects
Grain size
GTP-Binding Protein gamma Subunits - genetics
GTP-Binding Protein gamma Subunits - physiology
heterotrimeric G protein
Molecular machines
Mutation
Mutation - genetics
Oryza
Oryza - genetics
Oryza - growth & development
Particle size
Plant biomass
Plant growth
Plant Proteins - genetics
Plant Proteins - physiology
Plants, Genetically Modified - genetics
Plants, Genetically Modified - growth & development
Proteins
RGG2
Rice
Seeds
Sheaths
Signal transduction
Switches
Weight
yield production
α-Amylase
title Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20of%20RGG2,%20which%20encodes%20a%20type%20B%20heterotrimeric%20G%20protein%20%CE%B3%20subunit,%20increases%20grain%20size%20and%20yield%20production%20in%20rice&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Miao,%20Jun&rft.date=2019-03&rft.volume=17&rft.issue=3&rft.spage=650&rft.epage=664&rft.pages=650-664&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13005&rft_dat=%3Cgale_pubme%3EA733295911%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183581035&rft_id=info:pmid/30160362&rft_galeid=A733295911&rfr_iscdi=true