Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice
Summary Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2019-03, Vol.17 (3), p.650-664 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 664 |
---|---|
container_issue | 3 |
container_start_page | 650 |
container_title | Plant biotechnology journal |
container_volume | 17 |
creator | Miao, Jun Yang, Zefeng Zhang, Dongping Wang, Yuzhu Xu, Mengbin Zhou, Lihui Wang, Jun Wu, Shujun Yao, Youli Du, Xi Gu, Fangfei Gong, Zhiyun Gu, Minghong Liang, Guohua Zhou, Yong |
description | Summary
Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement. |
doi_str_mv | 10.1111/pbi.13005 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6381795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733295911</galeid><sourcerecordid>A733295911</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4085-da7b4ab06bdc504d1efcc56c7b736838cc84816e40dc36cf678116c93d5b2c973</originalsourceid><addsrcrecordid>eNpdUk2PFCEQ7RiN-6EH_4Ah8eJhZxaaBrovJrsbHTdZozF6JnRRPcOmB1rodjNe9kf5P_xNMjPrRIUDBe_Vg6JeUbxgdM7yOB9aN2ecUvGoOGaVVDMlRfn4EFfVUXGS0i2lJZNCPi2OOGWSclkeF_cfptGMLngSOvJ5sSjPyN3KwYqgh2AxEUPGzYDkkqxwxBjG6NYYHZAFGfIOnSe_fpI0tZN34xlxHiKalPOW0WQsuR9IjLdk47C32xQ7we66DGYZfFY86Uyf8PnDelp8fff2y9X72c3HxfXVxc1sWdFazKxRbWVaKlsLglaWYQcgJKhWcVnzGqCuaiaxoha4hE6qmjEJDbeiLaFR_LR4s9cdpnaNFtCP0fR6yOWYuNHBOP0v4t1KL8N3LXnNVCOywOsHgRi-TZhGvXYJsO-NxzAlXdJGiYbndmTqq_-ot2GKPpenS1ZzUTPKt4LzPWtpetTOd_lvDeRpce0geOxcPr9QnJeNaHayL_8u4fD2P83MhPM94S5nbg44o3rrEp1doncu0Z8ur3cB_w1rILAm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183581035</pqid></control><display><type>article</type><title>Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Miao, Jun ; Yang, Zefeng ; Zhang, Dongping ; Wang, Yuzhu ; Xu, Mengbin ; Zhou, Lihui ; Wang, Jun ; Wu, Shujun ; Yao, Youli ; Du, Xi ; Gu, Fangfei ; Gong, Zhiyun ; Gu, Minghong ; Liang, Guohua ; Zhou, Yong</creator><creatorcontrib>Miao, Jun ; Yang, Zefeng ; Zhang, Dongping ; Wang, Yuzhu ; Xu, Mengbin ; Zhou, Lihui ; Wang, Jun ; Wu, Shujun ; Yao, Youli ; Du, Xi ; Gu, Fangfei ; Gong, Zhiyun ; Gu, Minghong ; Liang, Guohua ; Zhou, Yong</creatorcontrib><description>Summary
Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13005</identifier><identifier>PMID: 30160362</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Cellular signal transduction ; CRISPR ; CRISPR-Cas Systems ; Crop production ; Crop yield ; Crop yields ; Edible Grain - genetics ; Edible Grain - growth & development ; G proteins ; Gene Editing - methods ; Gene Expression Regulation, Plant ; Genetic aspects ; Grain size ; GTP-Binding Protein gamma Subunits - genetics ; GTP-Binding Protein gamma Subunits - physiology ; heterotrimeric G protein ; Molecular machines ; Mutation ; Mutation - genetics ; Oryza ; Oryza - genetics ; Oryza - growth & development ; Particle size ; Plant biomass ; Plant growth ; Plant Proteins - genetics ; Plant Proteins - physiology ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - growth & development ; Proteins ; RGG2 ; Rice ; Seeds ; Sheaths ; Signal transduction ; Switches ; Weight ; yield production ; α-Amylase</subject><ispartof>Plant biotechnology journal, 2019-03, Vol.17 (3), p.650-664</ispartof><rights>2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0434-1617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13005$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13005$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30160362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Jun</creatorcontrib><creatorcontrib>Yang, Zefeng</creatorcontrib><creatorcontrib>Zhang, Dongping</creatorcontrib><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Xu, Mengbin</creatorcontrib><creatorcontrib>Zhou, Lihui</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wu, Shujun</creatorcontrib><creatorcontrib>Yao, Youli</creatorcontrib><creatorcontrib>Du, Xi</creatorcontrib><creatorcontrib>Gu, Fangfei</creatorcontrib><creatorcontrib>Gong, Zhiyun</creatorcontrib><creatorcontrib>Gu, Minghong</creatorcontrib><creatorcontrib>Liang, Guohua</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><title>Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.</description><subject>Cellular signal transduction</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Edible Grain - genetics</subject><subject>Edible Grain - growth & development</subject><subject>G proteins</subject><subject>Gene Editing - methods</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic aspects</subject><subject>Grain size</subject><subject>GTP-Binding Protein gamma Subunits - genetics</subject><subject>GTP-Binding Protein gamma Subunits - physiology</subject><subject>heterotrimeric G protein</subject><subject>Molecular machines</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Oryza</subject><subject>Oryza - genetics</subject><subject>Oryza - growth & development</subject><subject>Particle size</subject><subject>Plant biomass</subject><subject>Plant growth</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - physiology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - growth & development</subject><subject>Proteins</subject><subject>RGG2</subject><subject>Rice</subject><subject>Seeds</subject><subject>Sheaths</subject><subject>Signal transduction</subject><subject>Switches</subject><subject>Weight</subject><subject>yield production</subject><subject>α-Amylase</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdUk2PFCEQ7RiN-6EH_4Ah8eJhZxaaBrovJrsbHTdZozF6JnRRPcOmB1rodjNe9kf5P_xNMjPrRIUDBe_Vg6JeUbxgdM7yOB9aN2ecUvGoOGaVVDMlRfn4EFfVUXGS0i2lJZNCPi2OOGWSclkeF_cfptGMLngSOvJ5sSjPyN3KwYqgh2AxEUPGzYDkkqxwxBjG6NYYHZAFGfIOnSe_fpI0tZN34xlxHiKalPOW0WQsuR9IjLdk47C32xQ7we66DGYZfFY86Uyf8PnDelp8fff2y9X72c3HxfXVxc1sWdFazKxRbWVaKlsLglaWYQcgJKhWcVnzGqCuaiaxoha4hE6qmjEJDbeiLaFR_LR4s9cdpnaNFtCP0fR6yOWYuNHBOP0v4t1KL8N3LXnNVCOywOsHgRi-TZhGvXYJsO-NxzAlXdJGiYbndmTqq_-ot2GKPpenS1ZzUTPKt4LzPWtpetTOd_lvDeRpce0geOxcPr9QnJeNaHayL_8u4fD2P83MhPM94S5nbg44o3rrEp1doncu0Z8ur3cB_w1rILAm</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Miao, Jun</creator><creator>Yang, Zefeng</creator><creator>Zhang, Dongping</creator><creator>Wang, Yuzhu</creator><creator>Xu, Mengbin</creator><creator>Zhou, Lihui</creator><creator>Wang, Jun</creator><creator>Wu, Shujun</creator><creator>Yao, Youli</creator><creator>Du, Xi</creator><creator>Gu, Fangfei</creator><creator>Gong, Zhiyun</creator><creator>Gu, Minghong</creator><creator>Liang, Guohua</creator><creator>Zhou, Yong</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0434-1617</orcidid></search><sort><creationdate>201903</creationdate><title>Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice</title><author>Miao, Jun ; Yang, Zefeng ; Zhang, Dongping ; Wang, Yuzhu ; Xu, Mengbin ; Zhou, Lihui ; Wang, Jun ; Wu, Shujun ; Yao, Youli ; Du, Xi ; Gu, Fangfei ; Gong, Zhiyun ; Gu, Minghong ; Liang, Guohua ; Zhou, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4085-da7b4ab06bdc504d1efcc56c7b736838cc84816e40dc36cf678116c93d5b2c973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cellular signal transduction</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Edible Grain - genetics</topic><topic>Edible Grain - growth & development</topic><topic>G proteins</topic><topic>Gene Editing - methods</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic aspects</topic><topic>Grain size</topic><topic>GTP-Binding Protein gamma Subunits - genetics</topic><topic>GTP-Binding Protein gamma Subunits - physiology</topic><topic>heterotrimeric G protein</topic><topic>Molecular machines</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Oryza</topic><topic>Oryza - genetics</topic><topic>Oryza - growth & development</topic><topic>Particle size</topic><topic>Plant biomass</topic><topic>Plant growth</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - physiology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - growth & development</topic><topic>Proteins</topic><topic>RGG2</topic><topic>Rice</topic><topic>Seeds</topic><topic>Sheaths</topic><topic>Signal transduction</topic><topic>Switches</topic><topic>Weight</topic><topic>yield production</topic><topic>α-Amylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Jun</creatorcontrib><creatorcontrib>Yang, Zefeng</creatorcontrib><creatorcontrib>Zhang, Dongping</creatorcontrib><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Xu, Mengbin</creatorcontrib><creatorcontrib>Zhou, Lihui</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wu, Shujun</creatorcontrib><creatorcontrib>Yao, Youli</creatorcontrib><creatorcontrib>Du, Xi</creatorcontrib><creatorcontrib>Gu, Fangfei</creatorcontrib><creatorcontrib>Gong, Zhiyun</creatorcontrib><creatorcontrib>Gu, Minghong</creatorcontrib><creatorcontrib>Liang, Guohua</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Jun</au><au>Yang, Zefeng</au><au>Zhang, Dongping</au><au>Wang, Yuzhu</au><au>Xu, Mengbin</au><au>Zhou, Lihui</au><au>Wang, Jun</au><au>Wu, Shujun</au><au>Yao, Youli</au><au>Du, Xi</au><au>Gu, Fangfei</au><au>Gong, Zhiyun</au><au>Gu, Minghong</au><au>Liang, Guohua</au><au>Zhou, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2019-03</date><risdate>2019</risdate><volume>17</volume><issue>3</issue><spage>650</spage><epage>664</epage><pages>650-664</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>30160362</pmid><doi>10.1111/pbi.13005</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0434-1617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2019-03, Vol.17 (3), p.650-664 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6381795 |
source | MEDLINE; Wiley Online Library; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Cellular signal transduction CRISPR CRISPR-Cas Systems Crop production Crop yield Crop yields Edible Grain - genetics Edible Grain - growth & development G proteins Gene Editing - methods Gene Expression Regulation, Plant Genetic aspects Grain size GTP-Binding Protein gamma Subunits - genetics GTP-Binding Protein gamma Subunits - physiology heterotrimeric G protein Molecular machines Mutation Mutation - genetics Oryza Oryza - genetics Oryza - growth & development Particle size Plant biomass Plant growth Plant Proteins - genetics Plant Proteins - physiology Plants, Genetically Modified - genetics Plants, Genetically Modified - growth & development Proteins RGG2 Rice Seeds Sheaths Signal transduction Switches Weight yield production α-Amylase |
title | Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20of%20RGG2,%20which%20encodes%20a%20type%20B%20heterotrimeric%20G%20protein%20%CE%B3%20subunit,%20increases%20grain%20size%20and%20yield%20production%20in%20rice&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Miao,%20Jun&rft.date=2019-03&rft.volume=17&rft.issue=3&rft.spage=650&rft.epage=664&rft.pages=650-664&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13005&rft_dat=%3Cgale_pubme%3EA733295911%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183581035&rft_id=info:pmid/30160362&rft_galeid=A733295911&rfr_iscdi=true |