Ferroptosis as a target for protection against cardiomyopathy

Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-02, Vol.116 (7), p.2672-2680
Hauptverfasser: Fang, Xuexian, Wang, Hao, Han, Dan, Xie, Enjun, Yang, Xiang, Wei, Jiayu, Gu, Shanshan, Gao, Feng, Zhu, Nali, Yin, Xiangju, Cheng, Qi, Zhang, Pan, Dai, Wei, Chen, Jinghai, Yang, Fuquan, Yang, Huang-Tian, Linkermann, Andreas, Gu, Wei, Min, Junxia, Wang, Fudi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2680
container_issue 7
container_start_page 2672
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Fang, Xuexian
Wang, Hao
Han, Dan
Xie, Enjun
Yang, Xiang
Wei, Jiayu
Gu, Shanshan
Gao, Feng
Zhu, Nali
Yin, Xiangju
Cheng, Qi
Zhang, Pan
Dai, Wei
Chen, Jinghai
Yang, Fuquan
Yang, Huang-Tian
Linkermann, Andreas
Gu, Wei
Min, Junxia
Wang, Fudi
description Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3−/−, Mlkl−/−, or Fadd−/−Mlkl−/− mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated upregulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated inmitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention.
doi_str_mv 10.1073/pnas.1821022116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6377499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26682948</jstor_id><sourcerecordid>26682948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9f458540c7c18d1a61d5bf43e3c4b78f853ea6ae34a3d01fad0c98fa8cb85ced3</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMotn6cPSkLnredfGw2OShIsSoUvOg5TLPZusVu1iQV-t-7pVoVBubwfvPm8Qi5oDCiUPJx12IcUcUoMEapPCBDCprmUmg4JEMAVuZKMDEgJzEuAUAXCo7JgIPUjEk6JDdTF4Lvko9NzLCfLGFYuJTVPmRd8MnZ1Pg2wwU2bUyZxVA1frXxHaa3zRk5qvE9uvPvfUpep_cvk8d89vzwNLmb5bYAnXJdi0IVAmxpqaooSloV81pwx62Yl6pWBXco0XGBvAJaYwVWqxqVnavCuoqfktudb7eer1xlXZsCvpsuNCsMG-OxMf-VtnkzC_9pJC9LoXVvcP1tEPzH2sVkln4d2j6zYbTUUhYSRE-Nd5QNPsbg6v0HCmbbt9n2bX777i-u_gbb8z8F98DlDljG5MNeZ1IqpoXiX3Iah7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179665604</pqid></control><display><type>article</type><title>Ferroptosis as a target for protection against cardiomyopathy</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fang, Xuexian ; Wang, Hao ; Han, Dan ; Xie, Enjun ; Yang, Xiang ; Wei, Jiayu ; Gu, Shanshan ; Gao, Feng ; Zhu, Nali ; Yin, Xiangju ; Cheng, Qi ; Zhang, Pan ; Dai, Wei ; Chen, Jinghai ; Yang, Fuquan ; Yang, Huang-Tian ; Linkermann, Andreas ; Gu, Wei ; Min, Junxia ; Wang, Fudi</creator><creatorcontrib>Fang, Xuexian ; Wang, Hao ; Han, Dan ; Xie, Enjun ; Yang, Xiang ; Wei, Jiayu ; Gu, Shanshan ; Gao, Feng ; Zhu, Nali ; Yin, Xiangju ; Cheng, Qi ; Zhang, Pan ; Dai, Wei ; Chen, Jinghai ; Yang, Fuquan ; Yang, Huang-Tian ; Linkermann, Andreas ; Gu, Wei ; Min, Junxia ; Wang, Fudi</creatorcontrib><description>Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3−/−, Mlkl−/−, or Fadd−/−Mlkl−/− mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated upregulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated inmitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1821022116</identifier><identifier>PMID: 30692261</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal models ; Animals ; Antioxidants ; Apoptosis ; Biological Sciences ; Cardiomyocytes ; Cardiomyopathies - chemically induced ; Cardiomyopathies - prevention &amp; control ; Cardiomyopathy ; Cardiotoxicity ; Cardiovascular diseases ; Cell death ; Chelation ; Congestive heart failure ; Coronary artery disease ; Damage ; Degradation ; Doxorubicin ; Doxorubicin - pharmacology ; Doxorubicin - toxicity ; FADD protein ; Ferroptosis ; Gene sequencing ; Heart diseases ; Heart failure ; Heme ; Heme - metabolism ; Heme oxygenase (decyclizing) ; Heme Oxygenase-1 - genetics ; Heme Oxygenase-1 - metabolism ; Iron ; Iron - metabolism ; Ischemia ; Lipid membranes ; Lipid Peroxidation ; Lipids ; Membranes ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - enzymology ; Mitochondria, Heart - metabolism ; Mortality ; Myocytes, Cardiac - metabolism ; Necroptosis ; NF-E2-Related Factor 2 - genetics ; Oxygenase ; Peroxidation ; PNAS Plus ; Protoporphyrin ; Protoporphyrin IX ; Razoxane ; Reperfusion ; Reperfusion Injury - prevention &amp; control ; Ribonucleic acid ; RNA ; Up-Regulation ; Zinc ; Zinc protoporphyrin IX</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-02, Vol.116 (7), p.2672-2680</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 12, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9f458540c7c18d1a61d5bf43e3c4b78f853ea6ae34a3d01fad0c98fa8cb85ced3</citedby><cites>FETCH-LOGICAL-c509t-9f458540c7c18d1a61d5bf43e3c4b78f853ea6ae34a3d01fad0c98fa8cb85ced3</cites><orcidid>0000-0001-8099-6327 ; 0000-0001-6287-9725 ; 0000-0002-1480-2368 ; 0000-0001-5414-9888 ; 0000-0001-7661-3688 ; 0000-0001-8730-0003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26682948$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26682948$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30692261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Xuexian</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Han, Dan</creatorcontrib><creatorcontrib>Xie, Enjun</creatorcontrib><creatorcontrib>Yang, Xiang</creatorcontrib><creatorcontrib>Wei, Jiayu</creatorcontrib><creatorcontrib>Gu, Shanshan</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Zhu, Nali</creatorcontrib><creatorcontrib>Yin, Xiangju</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Chen, Jinghai</creatorcontrib><creatorcontrib>Yang, Fuquan</creatorcontrib><creatorcontrib>Yang, Huang-Tian</creatorcontrib><creatorcontrib>Linkermann, Andreas</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Min, Junxia</creatorcontrib><creatorcontrib>Wang, Fudi</creatorcontrib><title>Ferroptosis as a target for protection against cardiomyopathy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3−/−, Mlkl−/−, or Fadd−/−Mlkl−/− mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated upregulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated inmitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Biological Sciences</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathies - chemically induced</subject><subject>Cardiomyopathies - prevention &amp; control</subject><subject>Cardiomyopathy</subject><subject>Cardiotoxicity</subject><subject>Cardiovascular diseases</subject><subject>Cell death</subject><subject>Chelation</subject><subject>Congestive heart failure</subject><subject>Coronary artery disease</subject><subject>Damage</subject><subject>Degradation</subject><subject>Doxorubicin</subject><subject>Doxorubicin - pharmacology</subject><subject>Doxorubicin - toxicity</subject><subject>FADD protein</subject><subject>Ferroptosis</subject><subject>Gene sequencing</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heme</subject><subject>Heme - metabolism</subject><subject>Heme oxygenase (decyclizing)</subject><subject>Heme Oxygenase-1 - genetics</subject><subject>Heme Oxygenase-1 - metabolism</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Ischemia</subject><subject>Lipid membranes</subject><subject>Lipid Peroxidation</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - enzymology</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mortality</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Necroptosis</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>Oxygenase</subject><subject>Peroxidation</subject><subject>PNAS Plus</subject><subject>Protoporphyrin</subject><subject>Protoporphyrin IX</subject><subject>Razoxane</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - prevention &amp; control</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Up-Regulation</subject><subject>Zinc</subject><subject>Zinc protoporphyrin IX</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1LAzEQxYMotn6cPSkLnredfGw2OShIsSoUvOg5TLPZusVu1iQV-t-7pVoVBubwfvPm8Qi5oDCiUPJx12IcUcUoMEapPCBDCprmUmg4JEMAVuZKMDEgJzEuAUAXCo7JgIPUjEk6JDdTF4Lvko9NzLCfLGFYuJTVPmRd8MnZ1Pg2wwU2bUyZxVA1frXxHaa3zRk5qvE9uvPvfUpep_cvk8d89vzwNLmb5bYAnXJdi0IVAmxpqaooSloV81pwx62Yl6pWBXco0XGBvAJaYwVWqxqVnavCuoqfktudb7eer1xlXZsCvpsuNCsMG-OxMf-VtnkzC_9pJC9LoXVvcP1tEPzH2sVkln4d2j6zYbTUUhYSRE-Nd5QNPsbg6v0HCmbbt9n2bX777i-u_gbb8z8F98DlDljG5MNeZ1IqpoXiX3Iah7Y</recordid><startdate>20190212</startdate><enddate>20190212</enddate><creator>Fang, Xuexian</creator><creator>Wang, Hao</creator><creator>Han, Dan</creator><creator>Xie, Enjun</creator><creator>Yang, Xiang</creator><creator>Wei, Jiayu</creator><creator>Gu, Shanshan</creator><creator>Gao, Feng</creator><creator>Zhu, Nali</creator><creator>Yin, Xiangju</creator><creator>Cheng, Qi</creator><creator>Zhang, Pan</creator><creator>Dai, Wei</creator><creator>Chen, Jinghai</creator><creator>Yang, Fuquan</creator><creator>Yang, Huang-Tian</creator><creator>Linkermann, Andreas</creator><creator>Gu, Wei</creator><creator>Min, Junxia</creator><creator>Wang, Fudi</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8099-6327</orcidid><orcidid>https://orcid.org/0000-0001-6287-9725</orcidid><orcidid>https://orcid.org/0000-0002-1480-2368</orcidid><orcidid>https://orcid.org/0000-0001-5414-9888</orcidid><orcidid>https://orcid.org/0000-0001-7661-3688</orcidid><orcidid>https://orcid.org/0000-0001-8730-0003</orcidid></search><sort><creationdate>20190212</creationdate><title>Ferroptosis as a target for protection against cardiomyopathy</title><author>Fang, Xuexian ; Wang, Hao ; Han, Dan ; Xie, Enjun ; Yang, Xiang ; Wei, Jiayu ; Gu, Shanshan ; Gao, Feng ; Zhu, Nali ; Yin, Xiangju ; Cheng, Qi ; Zhang, Pan ; Dai, Wei ; Chen, Jinghai ; Yang, Fuquan ; Yang, Huang-Tian ; Linkermann, Andreas ; Gu, Wei ; Min, Junxia ; Wang, Fudi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9f458540c7c18d1a61d5bf43e3c4b78f853ea6ae34a3d01fad0c98fa8cb85ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Biological Sciences</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathies - chemically induced</topic><topic>Cardiomyopathies - prevention &amp; control</topic><topic>Cardiomyopathy</topic><topic>Cardiotoxicity</topic><topic>Cardiovascular diseases</topic><topic>Cell death</topic><topic>Chelation</topic><topic>Congestive heart failure</topic><topic>Coronary artery disease</topic><topic>Damage</topic><topic>Degradation</topic><topic>Doxorubicin</topic><topic>Doxorubicin - pharmacology</topic><topic>Doxorubicin - toxicity</topic><topic>FADD protein</topic><topic>Ferroptosis</topic><topic>Gene sequencing</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heme</topic><topic>Heme - metabolism</topic><topic>Heme oxygenase (decyclizing)</topic><topic>Heme Oxygenase-1 - genetics</topic><topic>Heme Oxygenase-1 - metabolism</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Ischemia</topic><topic>Lipid membranes</topic><topic>Lipid Peroxidation</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - enzymology</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mortality</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Necroptosis</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>Oxygenase</topic><topic>Peroxidation</topic><topic>PNAS Plus</topic><topic>Protoporphyrin</topic><topic>Protoporphyrin IX</topic><topic>Razoxane</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - prevention &amp; control</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Up-Regulation</topic><topic>Zinc</topic><topic>Zinc protoporphyrin IX</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Xuexian</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Han, Dan</creatorcontrib><creatorcontrib>Xie, Enjun</creatorcontrib><creatorcontrib>Yang, Xiang</creatorcontrib><creatorcontrib>Wei, Jiayu</creatorcontrib><creatorcontrib>Gu, Shanshan</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Zhu, Nali</creatorcontrib><creatorcontrib>Yin, Xiangju</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Chen, Jinghai</creatorcontrib><creatorcontrib>Yang, Fuquan</creatorcontrib><creatorcontrib>Yang, Huang-Tian</creatorcontrib><creatorcontrib>Linkermann, Andreas</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Min, Junxia</creatorcontrib><creatorcontrib>Wang, Fudi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Xuexian</au><au>Wang, Hao</au><au>Han, Dan</au><au>Xie, Enjun</au><au>Yang, Xiang</au><au>Wei, Jiayu</au><au>Gu, Shanshan</au><au>Gao, Feng</au><au>Zhu, Nali</au><au>Yin, Xiangju</au><au>Cheng, Qi</au><au>Zhang, Pan</au><au>Dai, Wei</au><au>Chen, Jinghai</au><au>Yang, Fuquan</au><au>Yang, Huang-Tian</au><au>Linkermann, Andreas</au><au>Gu, Wei</au><au>Min, Junxia</au><au>Wang, Fudi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroptosis as a target for protection against cardiomyopathy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-02-12</date><risdate>2019</risdate><volume>116</volume><issue>7</issue><spage>2672</spage><epage>2680</epage><pages>2672-2680</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3−/−, Mlkl−/−, or Fadd−/−Mlkl−/− mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated upregulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated inmitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30692261</pmid><doi>10.1073/pnas.1821022116</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8099-6327</orcidid><orcidid>https://orcid.org/0000-0001-6287-9725</orcidid><orcidid>https://orcid.org/0000-0002-1480-2368</orcidid><orcidid>https://orcid.org/0000-0001-5414-9888</orcidid><orcidid>https://orcid.org/0000-0001-7661-3688</orcidid><orcidid>https://orcid.org/0000-0001-8730-0003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-02, Vol.116 (7), p.2672-2680
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6377499
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animal models
Animals
Antioxidants
Apoptosis
Biological Sciences
Cardiomyocytes
Cardiomyopathies - chemically induced
Cardiomyopathies - prevention & control
Cardiomyopathy
Cardiotoxicity
Cardiovascular diseases
Cell death
Chelation
Congestive heart failure
Coronary artery disease
Damage
Degradation
Doxorubicin
Doxorubicin - pharmacology
Doxorubicin - toxicity
FADD protein
Ferroptosis
Gene sequencing
Heart diseases
Heart failure
Heme
Heme - metabolism
Heme oxygenase (decyclizing)
Heme Oxygenase-1 - genetics
Heme Oxygenase-1 - metabolism
Iron
Iron - metabolism
Ischemia
Lipid membranes
Lipid Peroxidation
Lipids
Membranes
Mice
Mice, Knockout
Mitochondria
Mitochondria, Heart - drug effects
Mitochondria, Heart - enzymology
Mitochondria, Heart - metabolism
Mortality
Myocytes, Cardiac - metabolism
Necroptosis
NF-E2-Related Factor 2 - genetics
Oxygenase
Peroxidation
PNAS Plus
Protoporphyrin
Protoporphyrin IX
Razoxane
Reperfusion
Reperfusion Injury - prevention & control
Ribonucleic acid
RNA
Up-Regulation
Zinc
Zinc protoporphyrin IX
title Ferroptosis as a target for protection against cardiomyopathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroptosis%20as%20a%20target%20for%20protection%20against%20cardiomyopathy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fang,%20Xuexian&rft.date=2019-02-12&rft.volume=116&rft.issue=7&rft.spage=2672&rft.epage=2680&rft.pages=2672-2680&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1821022116&rft_dat=%3Cjstor_pubme%3E26682948%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179665604&rft_id=info:pmid/30692261&rft_jstor_id=26682948&rfr_iscdi=true