Ferroptosis as a target for protection against cardiomyopathy
Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programme...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-02, Vol.116 (7), p.2672-2680 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2680 |
---|---|
container_issue | 7 |
container_start_page | 2672 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Fang, Xuexian Wang, Hao Han, Dan Xie, Enjun Yang, Xiang Wei, Jiayu Gu, Shanshan Gao, Feng Zhu, Nali Yin, Xiangju Cheng, Qi Zhang, Pan Dai, Wei Chen, Jinghai Yang, Fuquan Yang, Huang-Tian Linkermann, Andreas Gu, Wei Min, Junxia Wang, Fudi |
description | Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3−/−, Mlkl−/−, or Fadd−/−Mlkl−/− mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated upregulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated inmitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention. |
doi_str_mv | 10.1073/pnas.1821022116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6377499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26682948</jstor_id><sourcerecordid>26682948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9f458540c7c18d1a61d5bf43e3c4b78f853ea6ae34a3d01fad0c98fa8cb85ced3</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMotn6cPSkLnredfGw2OShIsSoUvOg5TLPZusVu1iQV-t-7pVoVBubwfvPm8Qi5oDCiUPJx12IcUcUoMEapPCBDCprmUmg4JEMAVuZKMDEgJzEuAUAXCo7JgIPUjEk6JDdTF4Lvko9NzLCfLGFYuJTVPmRd8MnZ1Pg2wwU2bUyZxVA1frXxHaa3zRk5qvE9uvPvfUpep_cvk8d89vzwNLmb5bYAnXJdi0IVAmxpqaooSloV81pwx62Yl6pWBXco0XGBvAJaYwVWqxqVnavCuoqfktudb7eer1xlXZsCvpsuNCsMG-OxMf-VtnkzC_9pJC9LoXVvcP1tEPzH2sVkln4d2j6zYbTUUhYSRE-Nd5QNPsbg6v0HCmbbt9n2bX777i-u_gbb8z8F98DlDljG5MNeZ1IqpoXiX3Iah7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179665604</pqid></control><display><type>article</type><title>Ferroptosis as a target for protection against cardiomyopathy</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fang, Xuexian ; Wang, Hao ; Han, Dan ; Xie, Enjun ; Yang, Xiang ; Wei, Jiayu ; Gu, Shanshan ; Gao, Feng ; Zhu, Nali ; Yin, Xiangju ; Cheng, Qi ; Zhang, Pan ; Dai, Wei ; Chen, Jinghai ; Yang, Fuquan ; Yang, Huang-Tian ; Linkermann, Andreas ; Gu, Wei ; Min, Junxia ; Wang, Fudi</creator><creatorcontrib>Fang, Xuexian ; Wang, Hao ; Han, Dan ; Xie, Enjun ; Yang, Xiang ; Wei, Jiayu ; Gu, Shanshan ; Gao, Feng ; Zhu, Nali ; Yin, Xiangju ; Cheng, Qi ; Zhang, Pan ; Dai, Wei ; Chen, Jinghai ; Yang, Fuquan ; Yang, Huang-Tian ; Linkermann, Andreas ; Gu, Wei ; Min, Junxia ; Wang, Fudi</creatorcontrib><description>Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3−/−, Mlkl−/−, or Fadd−/−Mlkl−/− mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated upregulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated inmitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1821022116</identifier><identifier>PMID: 30692261</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal models ; Animals ; Antioxidants ; Apoptosis ; Biological Sciences ; Cardiomyocytes ; Cardiomyopathies - chemically induced ; Cardiomyopathies - prevention & control ; Cardiomyopathy ; Cardiotoxicity ; Cardiovascular diseases ; Cell death ; Chelation ; Congestive heart failure ; Coronary artery disease ; Damage ; Degradation ; Doxorubicin ; Doxorubicin - pharmacology ; Doxorubicin - toxicity ; FADD protein ; Ferroptosis ; Gene sequencing ; Heart diseases ; Heart failure ; Heme ; Heme - metabolism ; Heme oxygenase (decyclizing) ; Heme Oxygenase-1 - genetics ; Heme Oxygenase-1 - metabolism ; Iron ; Iron - metabolism ; Ischemia ; Lipid membranes ; Lipid Peroxidation ; Lipids ; Membranes ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - enzymology ; Mitochondria, Heart - metabolism ; Mortality ; Myocytes, Cardiac - metabolism ; Necroptosis ; NF-E2-Related Factor 2 - genetics ; Oxygenase ; Peroxidation ; PNAS Plus ; Protoporphyrin ; Protoporphyrin IX ; Razoxane ; Reperfusion ; Reperfusion Injury - prevention & control ; Ribonucleic acid ; RNA ; Up-Regulation ; Zinc ; Zinc protoporphyrin IX</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-02, Vol.116 (7), p.2672-2680</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 12, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9f458540c7c18d1a61d5bf43e3c4b78f853ea6ae34a3d01fad0c98fa8cb85ced3</citedby><cites>FETCH-LOGICAL-c509t-9f458540c7c18d1a61d5bf43e3c4b78f853ea6ae34a3d01fad0c98fa8cb85ced3</cites><orcidid>0000-0001-8099-6327 ; 0000-0001-6287-9725 ; 0000-0002-1480-2368 ; 0000-0001-5414-9888 ; 0000-0001-7661-3688 ; 0000-0001-8730-0003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26682948$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26682948$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30692261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Xuexian</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Han, Dan</creatorcontrib><creatorcontrib>Xie, Enjun</creatorcontrib><creatorcontrib>Yang, Xiang</creatorcontrib><creatorcontrib>Wei, Jiayu</creatorcontrib><creatorcontrib>Gu, Shanshan</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Zhu, Nali</creatorcontrib><creatorcontrib>Yin, Xiangju</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Chen, Jinghai</creatorcontrib><creatorcontrib>Yang, Fuquan</creatorcontrib><creatorcontrib>Yang, Huang-Tian</creatorcontrib><creatorcontrib>Linkermann, Andreas</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Min, Junxia</creatorcontrib><creatorcontrib>Wang, Fudi</creatorcontrib><title>Ferroptosis as a target for protection against cardiomyopathy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3−/−, Mlkl−/−, or Fadd−/−Mlkl−/− mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated upregulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated inmitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Biological Sciences</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathies - chemically induced</subject><subject>Cardiomyopathies - prevention & control</subject><subject>Cardiomyopathy</subject><subject>Cardiotoxicity</subject><subject>Cardiovascular diseases</subject><subject>Cell death</subject><subject>Chelation</subject><subject>Congestive heart failure</subject><subject>Coronary artery disease</subject><subject>Damage</subject><subject>Degradation</subject><subject>Doxorubicin</subject><subject>Doxorubicin - pharmacology</subject><subject>Doxorubicin - toxicity</subject><subject>FADD protein</subject><subject>Ferroptosis</subject><subject>Gene sequencing</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heme</subject><subject>Heme - metabolism</subject><subject>Heme oxygenase (decyclizing)</subject><subject>Heme Oxygenase-1 - genetics</subject><subject>Heme Oxygenase-1 - metabolism</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Ischemia</subject><subject>Lipid membranes</subject><subject>Lipid Peroxidation</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - enzymology</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mortality</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Necroptosis</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>Oxygenase</subject><subject>Peroxidation</subject><subject>PNAS Plus</subject><subject>Protoporphyrin</subject><subject>Protoporphyrin IX</subject><subject>Razoxane</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - prevention & control</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Up-Regulation</subject><subject>Zinc</subject><subject>Zinc protoporphyrin IX</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1LAzEQxYMotn6cPSkLnredfGw2OShIsSoUvOg5TLPZusVu1iQV-t-7pVoVBubwfvPm8Qi5oDCiUPJx12IcUcUoMEapPCBDCprmUmg4JEMAVuZKMDEgJzEuAUAXCo7JgIPUjEk6JDdTF4Lvko9NzLCfLGFYuJTVPmRd8MnZ1Pg2wwU2bUyZxVA1frXxHaa3zRk5qvE9uvPvfUpep_cvk8d89vzwNLmb5bYAnXJdi0IVAmxpqaooSloV81pwx62Yl6pWBXco0XGBvAJaYwVWqxqVnavCuoqfktudb7eer1xlXZsCvpsuNCsMG-OxMf-VtnkzC_9pJC9LoXVvcP1tEPzH2sVkln4d2j6zYbTUUhYSRE-Nd5QNPsbg6v0HCmbbt9n2bX777i-u_gbb8z8F98DlDljG5MNeZ1IqpoXiX3Iah7Y</recordid><startdate>20190212</startdate><enddate>20190212</enddate><creator>Fang, Xuexian</creator><creator>Wang, Hao</creator><creator>Han, Dan</creator><creator>Xie, Enjun</creator><creator>Yang, Xiang</creator><creator>Wei, Jiayu</creator><creator>Gu, Shanshan</creator><creator>Gao, Feng</creator><creator>Zhu, Nali</creator><creator>Yin, Xiangju</creator><creator>Cheng, Qi</creator><creator>Zhang, Pan</creator><creator>Dai, Wei</creator><creator>Chen, Jinghai</creator><creator>Yang, Fuquan</creator><creator>Yang, Huang-Tian</creator><creator>Linkermann, Andreas</creator><creator>Gu, Wei</creator><creator>Min, Junxia</creator><creator>Wang, Fudi</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8099-6327</orcidid><orcidid>https://orcid.org/0000-0001-6287-9725</orcidid><orcidid>https://orcid.org/0000-0002-1480-2368</orcidid><orcidid>https://orcid.org/0000-0001-5414-9888</orcidid><orcidid>https://orcid.org/0000-0001-7661-3688</orcidid><orcidid>https://orcid.org/0000-0001-8730-0003</orcidid></search><sort><creationdate>20190212</creationdate><title>Ferroptosis as a target for protection against cardiomyopathy</title><author>Fang, Xuexian ; Wang, Hao ; Han, Dan ; Xie, Enjun ; Yang, Xiang ; Wei, Jiayu ; Gu, Shanshan ; Gao, Feng ; Zhu, Nali ; Yin, Xiangju ; Cheng, Qi ; Zhang, Pan ; Dai, Wei ; Chen, Jinghai ; Yang, Fuquan ; Yang, Huang-Tian ; Linkermann, Andreas ; Gu, Wei ; Min, Junxia ; Wang, Fudi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9f458540c7c18d1a61d5bf43e3c4b78f853ea6ae34a3d01fad0c98fa8cb85ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Biological Sciences</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathies - chemically induced</topic><topic>Cardiomyopathies - prevention & control</topic><topic>Cardiomyopathy</topic><topic>Cardiotoxicity</topic><topic>Cardiovascular diseases</topic><topic>Cell death</topic><topic>Chelation</topic><topic>Congestive heart failure</topic><topic>Coronary artery disease</topic><topic>Damage</topic><topic>Degradation</topic><topic>Doxorubicin</topic><topic>Doxorubicin - pharmacology</topic><topic>Doxorubicin - toxicity</topic><topic>FADD protein</topic><topic>Ferroptosis</topic><topic>Gene sequencing</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heme</topic><topic>Heme - metabolism</topic><topic>Heme oxygenase (decyclizing)</topic><topic>Heme Oxygenase-1 - genetics</topic><topic>Heme Oxygenase-1 - metabolism</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Ischemia</topic><topic>Lipid membranes</topic><topic>Lipid Peroxidation</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - enzymology</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mortality</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Necroptosis</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>Oxygenase</topic><topic>Peroxidation</topic><topic>PNAS Plus</topic><topic>Protoporphyrin</topic><topic>Protoporphyrin IX</topic><topic>Razoxane</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - prevention & control</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Up-Regulation</topic><topic>Zinc</topic><topic>Zinc protoporphyrin IX</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Xuexian</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Han, Dan</creatorcontrib><creatorcontrib>Xie, Enjun</creatorcontrib><creatorcontrib>Yang, Xiang</creatorcontrib><creatorcontrib>Wei, Jiayu</creatorcontrib><creatorcontrib>Gu, Shanshan</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Zhu, Nali</creatorcontrib><creatorcontrib>Yin, Xiangju</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Chen, Jinghai</creatorcontrib><creatorcontrib>Yang, Fuquan</creatorcontrib><creatorcontrib>Yang, Huang-Tian</creatorcontrib><creatorcontrib>Linkermann, Andreas</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Min, Junxia</creatorcontrib><creatorcontrib>Wang, Fudi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Xuexian</au><au>Wang, Hao</au><au>Han, Dan</au><au>Xie, Enjun</au><au>Yang, Xiang</au><au>Wei, Jiayu</au><au>Gu, Shanshan</au><au>Gao, Feng</au><au>Zhu, Nali</au><au>Yin, Xiangju</au><au>Cheng, Qi</au><au>Zhang, Pan</au><au>Dai, Wei</au><au>Chen, Jinghai</au><au>Yang, Fuquan</au><au>Yang, Huang-Tian</au><au>Linkermann, Andreas</au><au>Gu, Wei</au><au>Min, Junxia</au><au>Wang, Fudi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroptosis as a target for protection against cardiomyopathy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-02-12</date><risdate>2019</risdate><volume>116</volume><issue>7</issue><spage>2672</spage><epage>2680</epage><pages>2672-2680</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3−/−, Mlkl−/−, or Fadd−/−Mlkl−/− mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated upregulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated inmitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30692261</pmid><doi>10.1073/pnas.1821022116</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8099-6327</orcidid><orcidid>https://orcid.org/0000-0001-6287-9725</orcidid><orcidid>https://orcid.org/0000-0002-1480-2368</orcidid><orcidid>https://orcid.org/0000-0001-5414-9888</orcidid><orcidid>https://orcid.org/0000-0001-7661-3688</orcidid><orcidid>https://orcid.org/0000-0001-8730-0003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-02, Vol.116 (7), p.2672-2680 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6377499 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animal models Animals Antioxidants Apoptosis Biological Sciences Cardiomyocytes Cardiomyopathies - chemically induced Cardiomyopathies - prevention & control Cardiomyopathy Cardiotoxicity Cardiovascular diseases Cell death Chelation Congestive heart failure Coronary artery disease Damage Degradation Doxorubicin Doxorubicin - pharmacology Doxorubicin - toxicity FADD protein Ferroptosis Gene sequencing Heart diseases Heart failure Heme Heme - metabolism Heme oxygenase (decyclizing) Heme Oxygenase-1 - genetics Heme Oxygenase-1 - metabolism Iron Iron - metabolism Ischemia Lipid membranes Lipid Peroxidation Lipids Membranes Mice Mice, Knockout Mitochondria Mitochondria, Heart - drug effects Mitochondria, Heart - enzymology Mitochondria, Heart - metabolism Mortality Myocytes, Cardiac - metabolism Necroptosis NF-E2-Related Factor 2 - genetics Oxygenase Peroxidation PNAS Plus Protoporphyrin Protoporphyrin IX Razoxane Reperfusion Reperfusion Injury - prevention & control Ribonucleic acid RNA Up-Regulation Zinc Zinc protoporphyrin IX |
title | Ferroptosis as a target for protection against cardiomyopathy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroptosis%20as%20a%20target%20for%20protection%20against%20cardiomyopathy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fang,%20Xuexian&rft.date=2019-02-12&rft.volume=116&rft.issue=7&rft.spage=2672&rft.epage=2680&rft.pages=2672-2680&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1821022116&rft_dat=%3Cjstor_pubme%3E26682948%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179665604&rft_id=info:pmid/30692261&rft_jstor_id=26682948&rfr_iscdi=true |