Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors

[Display omitted] A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry 2019-01, Vol.27 (2), p.255-264
Hauptverfasser: Barinka, Cyril, Novakova, Zora, Hin, Niyada, Bím, Daniel, Ferraris, Dana V., Duvall, Bridget, Kabarriti, Gabriel, Tsukamoto, Reiji, Budesinsky, Milos, Motlova, Lucia, Rojas, Camilo, Slusher, Barbara S., Rokob, Tibor András, Rulíšek, Lubomír, Tsukamoto, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 2
container_start_page 255
container_title Bioorganic & medicinal chemistry
container_volume 27
creator Barinka, Cyril
Novakova, Zora
Hin, Niyada
Bím, Daniel
Ferraris, Dana V.
Duvall, Bridget
Kabarriti, Gabriel
Tsukamoto, Reiji
Budesinsky, Milos
Motlova, Lucia
Rojas, Camilo
Slusher, Barbara S.
Rokob, Tibor András
Rulíšek, Lubomír
Tsukamoto, Takashi
description [Display omitted] A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII’s preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.
doi_str_mv 10.1016/j.bmc.2018.11.022
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6374116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968089618316110</els_id><sourcerecordid>30552009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3a736cdec0fbc3615a17791bd274d1707fc90bd288854baa07c5e4d41814abeb3</originalsourceid><addsrcrecordid>eNp9kUtLJDEUhcPgoO3jB8xG8geqvLcq9UIQRBxtEFzMzDrkVW2arkqRpNX-95O2bdGNq5B7z_nCySHkF0KOgPXFMpeDygvANkfMoSh-kBmymmVl2eEBmUFXtxm0XX1EjkNYAkDBOjwkRyVUVQHQzcjLn-jXKq69WFExaqrcMK2jiNaNaSJFsIH2ztPJRTNGascnK-12S11PF6skHUQ0VAkv3etmMlO0WgRD53MqN2_jN0GWSEbv7c6HU_KzF6tgzt7PE_Lv9-3fm_vs4fFufnP9kClWYcxK0ZS10kZBL1VZYyWwaTqUumiYxgaaXnWQbm3bVkwKAY2qDNMMW2RCGlmekKsdd1rLwWiVQqSofPJ2EH7DnbD862a0T3zhnnldNgyxTgDcAZR3IXjTf3gR-LYFvuSpBb5tgSPy1ELynH9-9MOx__YkuNwJTIr-bI3nQVkzKqOtNypy7ew3-P_MApyt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Barinka, Cyril ; Novakova, Zora ; Hin, Niyada ; Bím, Daniel ; Ferraris, Dana V. ; Duvall, Bridget ; Kabarriti, Gabriel ; Tsukamoto, Reiji ; Budesinsky, Milos ; Motlova, Lucia ; Rojas, Camilo ; Slusher, Barbara S. ; Rokob, Tibor András ; Rulíšek, Lubomír ; Tsukamoto, Takashi</creator><creatorcontrib>Barinka, Cyril ; Novakova, Zora ; Hin, Niyada ; Bím, Daniel ; Ferraris, Dana V. ; Duvall, Bridget ; Kabarriti, Gabriel ; Tsukamoto, Reiji ; Budesinsky, Milos ; Motlova, Lucia ; Rojas, Camilo ; Slusher, Barbara S. ; Rokob, Tibor András ; Rulíšek, Lubomír ; Tsukamoto, Takashi</creatorcontrib><description>[Display omitted] A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII’s preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.</description><identifier>ISSN: 0968-0896</identifier><identifier>EISSN: 1464-3391</identifier><identifier>DOI: 10.1016/j.bmc.2018.11.022</identifier><identifier>PMID: 30552009</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Carbamates - chemical synthesis ; Carbamates - chemistry ; Carbamates - metabolism ; Catalytic Domain ; Cell Line ; Crystal structure ; Drosophila - genetics ; Enzyme Assays ; Glutamate carboxypeptidase II ; Glutamate Carboxypeptidase II - antagonists &amp; inhibitors ; Glutamate Carboxypeptidase II - chemistry ; Glutamate Carboxypeptidase II - metabolism ; Humans ; Hydrogen Bonding ; Metallopeptidase ; Models, Molecular ; Prostate-specific membrane antigen ; Protease Inhibitors - chemical synthesis ; Protease Inhibitors - chemistry ; Protease Inhibitors - metabolism ; Protein Binding ; Quantum Theory ; Stereoisomerism ; Urea - analogs &amp; derivatives ; Urea - chemical synthesis ; Urea - chemistry ; Urea - metabolism</subject><ispartof>Bioorganic &amp; medicinal chemistry, 2019-01, Vol.27 (2), p.255-264</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3a736cdec0fbc3615a17791bd274d1707fc90bd288854baa07c5e4d41814abeb3</citedby><cites>FETCH-LOGICAL-c451t-3a736cdec0fbc3615a17791bd274d1707fc90bd288854baa07c5e4d41814abeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bmc.2018.11.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30552009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barinka, Cyril</creatorcontrib><creatorcontrib>Novakova, Zora</creatorcontrib><creatorcontrib>Hin, Niyada</creatorcontrib><creatorcontrib>Bím, Daniel</creatorcontrib><creatorcontrib>Ferraris, Dana V.</creatorcontrib><creatorcontrib>Duvall, Bridget</creatorcontrib><creatorcontrib>Kabarriti, Gabriel</creatorcontrib><creatorcontrib>Tsukamoto, Reiji</creatorcontrib><creatorcontrib>Budesinsky, Milos</creatorcontrib><creatorcontrib>Motlova, Lucia</creatorcontrib><creatorcontrib>Rojas, Camilo</creatorcontrib><creatorcontrib>Slusher, Barbara S.</creatorcontrib><creatorcontrib>Rokob, Tibor András</creatorcontrib><creatorcontrib>Rulíšek, Lubomír</creatorcontrib><creatorcontrib>Tsukamoto, Takashi</creatorcontrib><title>Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors</title><title>Bioorganic &amp; medicinal chemistry</title><addtitle>Bioorg Med Chem</addtitle><description>[Display omitted] A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII’s preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.</description><subject>Animals</subject><subject>Carbamates - chemical synthesis</subject><subject>Carbamates - chemistry</subject><subject>Carbamates - metabolism</subject><subject>Catalytic Domain</subject><subject>Cell Line</subject><subject>Crystal structure</subject><subject>Drosophila - genetics</subject><subject>Enzyme Assays</subject><subject>Glutamate carboxypeptidase II</subject><subject>Glutamate Carboxypeptidase II - antagonists &amp; inhibitors</subject><subject>Glutamate Carboxypeptidase II - chemistry</subject><subject>Glutamate Carboxypeptidase II - metabolism</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Metallopeptidase</subject><subject>Models, Molecular</subject><subject>Prostate-specific membrane antigen</subject><subject>Protease Inhibitors - chemical synthesis</subject><subject>Protease Inhibitors - chemistry</subject><subject>Protease Inhibitors - metabolism</subject><subject>Protein Binding</subject><subject>Quantum Theory</subject><subject>Stereoisomerism</subject><subject>Urea - analogs &amp; derivatives</subject><subject>Urea - chemical synthesis</subject><subject>Urea - chemistry</subject><subject>Urea - metabolism</subject><issn>0968-0896</issn><issn>1464-3391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLJDEUhcPgoO3jB8xG8geqvLcq9UIQRBxtEFzMzDrkVW2arkqRpNX-95O2bdGNq5B7z_nCySHkF0KOgPXFMpeDygvANkfMoSh-kBmymmVl2eEBmUFXtxm0XX1EjkNYAkDBOjwkRyVUVQHQzcjLn-jXKq69WFExaqrcMK2jiNaNaSJFsIH2ztPJRTNGascnK-12S11PF6skHUQ0VAkv3etmMlO0WgRD53MqN2_jN0GWSEbv7c6HU_KzF6tgzt7PE_Lv9-3fm_vs4fFufnP9kClWYcxK0ZS10kZBL1VZYyWwaTqUumiYxgaaXnWQbm3bVkwKAY2qDNMMW2RCGlmekKsdd1rLwWiVQqSofPJ2EH7DnbD862a0T3zhnnldNgyxTgDcAZR3IXjTf3gR-LYFvuSpBb5tgSPy1ELynH9-9MOx__YkuNwJTIr-bI3nQVkzKqOtNypy7ew3-P_MApyt</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Barinka, Cyril</creator><creator>Novakova, Zora</creator><creator>Hin, Niyada</creator><creator>Bím, Daniel</creator><creator>Ferraris, Dana V.</creator><creator>Duvall, Bridget</creator><creator>Kabarriti, Gabriel</creator><creator>Tsukamoto, Reiji</creator><creator>Budesinsky, Milos</creator><creator>Motlova, Lucia</creator><creator>Rojas, Camilo</creator><creator>Slusher, Barbara S.</creator><creator>Rokob, Tibor András</creator><creator>Rulíšek, Lubomír</creator><creator>Tsukamoto, Takashi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20190115</creationdate><title>Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors</title><author>Barinka, Cyril ; Novakova, Zora ; Hin, Niyada ; Bím, Daniel ; Ferraris, Dana V. ; Duvall, Bridget ; Kabarriti, Gabriel ; Tsukamoto, Reiji ; Budesinsky, Milos ; Motlova, Lucia ; Rojas, Camilo ; Slusher, Barbara S. ; Rokob, Tibor András ; Rulíšek, Lubomír ; Tsukamoto, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3a736cdec0fbc3615a17791bd274d1707fc90bd288854baa07c5e4d41814abeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Carbamates - chemical synthesis</topic><topic>Carbamates - chemistry</topic><topic>Carbamates - metabolism</topic><topic>Catalytic Domain</topic><topic>Cell Line</topic><topic>Crystal structure</topic><topic>Drosophila - genetics</topic><topic>Enzyme Assays</topic><topic>Glutamate carboxypeptidase II</topic><topic>Glutamate Carboxypeptidase II - antagonists &amp; inhibitors</topic><topic>Glutamate Carboxypeptidase II - chemistry</topic><topic>Glutamate Carboxypeptidase II - metabolism</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Metallopeptidase</topic><topic>Models, Molecular</topic><topic>Prostate-specific membrane antigen</topic><topic>Protease Inhibitors - chemical synthesis</topic><topic>Protease Inhibitors - chemistry</topic><topic>Protease Inhibitors - metabolism</topic><topic>Protein Binding</topic><topic>Quantum Theory</topic><topic>Stereoisomerism</topic><topic>Urea - analogs &amp; derivatives</topic><topic>Urea - chemical synthesis</topic><topic>Urea - chemistry</topic><topic>Urea - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barinka, Cyril</creatorcontrib><creatorcontrib>Novakova, Zora</creatorcontrib><creatorcontrib>Hin, Niyada</creatorcontrib><creatorcontrib>Bím, Daniel</creatorcontrib><creatorcontrib>Ferraris, Dana V.</creatorcontrib><creatorcontrib>Duvall, Bridget</creatorcontrib><creatorcontrib>Kabarriti, Gabriel</creatorcontrib><creatorcontrib>Tsukamoto, Reiji</creatorcontrib><creatorcontrib>Budesinsky, Milos</creatorcontrib><creatorcontrib>Motlova, Lucia</creatorcontrib><creatorcontrib>Rojas, Camilo</creatorcontrib><creatorcontrib>Slusher, Barbara S.</creatorcontrib><creatorcontrib>Rokob, Tibor András</creatorcontrib><creatorcontrib>Rulíšek, Lubomír</creatorcontrib><creatorcontrib>Tsukamoto, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioorganic &amp; medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barinka, Cyril</au><au>Novakova, Zora</au><au>Hin, Niyada</au><au>Bím, Daniel</au><au>Ferraris, Dana V.</au><au>Duvall, Bridget</au><au>Kabarriti, Gabriel</au><au>Tsukamoto, Reiji</au><au>Budesinsky, Milos</au><au>Motlova, Lucia</au><au>Rojas, Camilo</au><au>Slusher, Barbara S.</au><au>Rokob, Tibor András</au><au>Rulíšek, Lubomír</au><au>Tsukamoto, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors</atitle><jtitle>Bioorganic &amp; medicinal chemistry</jtitle><addtitle>Bioorg Med Chem</addtitle><date>2019-01-15</date><risdate>2019</risdate><volume>27</volume><issue>2</issue><spage>255</spage><epage>264</epage><pages>255-264</pages><issn>0968-0896</issn><eissn>1464-3391</eissn><abstract>[Display omitted] A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII’s preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30552009</pmid><doi>10.1016/j.bmc.2018.11.022</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0968-0896
ispartof Bioorganic & medicinal chemistry, 2019-01, Vol.27 (2), p.255-264
issn 0968-0896
1464-3391
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6374116
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Carbamates - chemical synthesis
Carbamates - chemistry
Carbamates - metabolism
Catalytic Domain
Cell Line
Crystal structure
Drosophila - genetics
Enzyme Assays
Glutamate carboxypeptidase II
Glutamate Carboxypeptidase II - antagonists & inhibitors
Glutamate Carboxypeptidase II - chemistry
Glutamate Carboxypeptidase II - metabolism
Humans
Hydrogen Bonding
Metallopeptidase
Models, Molecular
Prostate-specific membrane antigen
Protease Inhibitors - chemical synthesis
Protease Inhibitors - chemistry
Protease Inhibitors - metabolism
Protein Binding
Quantum Theory
Stereoisomerism
Urea - analogs & derivatives
Urea - chemical synthesis
Urea - chemistry
Urea - metabolism
title Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20computational%20basis%20for%20potent%20inhibition%20of%20glutamate%20carboxypeptidase%20II%20by%20carbamate-based%20inhibitors&rft.jtitle=Bioorganic%20&%20medicinal%20chemistry&rft.au=Barinka,%20Cyril&rft.date=2019-01-15&rft.volume=27&rft.issue=2&rft.spage=255&rft.epage=264&rft.pages=255-264&rft.issn=0968-0896&rft.eissn=1464-3391&rft_id=info:doi/10.1016/j.bmc.2018.11.022&rft_dat=%3Cpubmed_cross%3E30552009%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30552009&rft_els_id=S0968089618316110&rfr_iscdi=true