Diversifying selection signatures among divergently selected subpopulations of Polish Red cattle

Polish Red cattle is one of the few indigenous breeds of European red cattle which is characterized by several desired features, such as high disease resistance, good health, longevity, good fertility, and high nutritional value of milk. Currently, Polish Red cattle population is a subject of two in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied genetics 2019-02, Vol.60 (1), p.87-95
Hauptverfasser: Gurgul, Artur, Jasielczuk, I., Semik-Gurgul, E., Szmatoła, T., Majewska, A., Sosin-Bzducha, E., Bugno-Poniewierska, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 87
container_title Journal of applied genetics
container_volume 60
creator Gurgul, Artur
Jasielczuk, I.
Semik-Gurgul, E.
Szmatoła, T.
Majewska, A.
Sosin-Bzducha, E.
Bugno-Poniewierska, M.
description Polish Red cattle is one of the few indigenous breeds of European red cattle which is characterized by several desired features, such as high disease resistance, good health, longevity, good fertility, and high nutritional value of milk. Currently, Polish Red cattle population is a subject of two independent breeding programs: (i) improvement program and (ii) genetic resources conservation program. The aim of the improvement program is the genetic progress in terms of milk production and body conformation traits, while the conservation program mainly focuses on protection of the genetic resources of Polish Red cattle and preservation of the existing, original gene pool. By the analysis of F ST genetic distances across genome-wide SNP panel, we detected diversifying selection signatures among these two subpopulations and indicated (among others) the significance of DGAT1 and FGF2 genes for milk production traits in these cattle. We also found that among genes being presumably under selection in terms of milk production, there are genes responsible, for example, for mammary gland development (e.g., SOSTDC1 , PYGO2 , MED1 , and CCND1 ) and immune system response (e.g., IL10RA , IL12B , and IL21 ). The most important finding of this study is that the most pronounced genetic differences between the analyzed populations were associated with β-defensin genes (e.g., DEFB1 , DEFB4A , DEFB5 , DEFB7 , DEFB10 , DEFB13 , EBD , BNBD-6 , and LAP ) located within so-called bovine cluster D on BTA27. The β-defensins are expressed mainly in the mammary gland and are antimicrobial peptides against the Gram-negative and Gram-positive bacteria, viruses, and other unicellular parasites. This suggests that antimicrobial resistance of mammary gland is of high importance during selection towards increased milk production and that genes responsible for this process are selected together with increasing levels of productivity.
doi_str_mv 10.1007/s13353-019-00484-0
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6373403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710668989</galeid><sourcerecordid>A710668989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-e968b1fbec171f60b80b4a5c9dda8e2f71ae25a8fbcdcfcc6a3e855ed461ca103</originalsourceid><addsrcrecordid>eNp9kk1rFTEYhYMo9lr9Ay5kwI2bqfmYZDIbofRDhYIiuo6ZzJtpSia5JjOF--_NeK-tFZEsAjnPOckbDkIvCT4hGLdvM2GMsxqTrsa4kU2NH6ENJR2umZTsMdoQypqadJIdoWc532DMZNPSp-iIYSG5pHyDvp-7W0jZ2Z0LY5XBg5ldDFV2Y9DzkiBXeopFGlZuhDD73QGDocpLv43bxevVk6toq8_Ru3xdfSmi0fPs4Tl6YrXP8OKwH6Nvlxdfzz7UV5_efzw7vaoNb5u5hk7IntgeDGmJFbiXuG80N90waAnUtkQD5Vra3gzGGiM0A8k5DI0gRhPMjtG7fe526ScYTHlp0l5tk5t02qmonXqoBHetxnirBGtZg1kJeHMISPHHAnlWk8sGvNcB4pIVpZRgyikmBX39F3oTlxTKeIqSlncNEay7p0btQblgY7nXrKHqtCVYCNnJlTr5B1XWAJMzMYB15fyBge4NJsWcE9i7GQlWay_Uvheq9EL96oVaf-fVn79zZ_ldhAKwPZCLFEZI9yP9J_YnJ3PFog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175941639</pqid></control><display><type>article</type><title>Diversifying selection signatures among divergently selected subpopulations of Polish Red cattle</title><source>SpringerLink Journals</source><creator>Gurgul, Artur ; Jasielczuk, I. ; Semik-Gurgul, E. ; Szmatoła, T. ; Majewska, A. ; Sosin-Bzducha, E. ; Bugno-Poniewierska, M.</creator><creatorcontrib>Gurgul, Artur ; Jasielczuk, I. ; Semik-Gurgul, E. ; Szmatoła, T. ; Majewska, A. ; Sosin-Bzducha, E. ; Bugno-Poniewierska, M.</creatorcontrib><description>Polish Red cattle is one of the few indigenous breeds of European red cattle which is characterized by several desired features, such as high disease resistance, good health, longevity, good fertility, and high nutritional value of milk. Currently, Polish Red cattle population is a subject of two independent breeding programs: (i) improvement program and (ii) genetic resources conservation program. The aim of the improvement program is the genetic progress in terms of milk production and body conformation traits, while the conservation program mainly focuses on protection of the genetic resources of Polish Red cattle and preservation of the existing, original gene pool. By the analysis of F ST genetic distances across genome-wide SNP panel, we detected diversifying selection signatures among these two subpopulations and indicated (among others) the significance of DGAT1 and FGF2 genes for milk production traits in these cattle. We also found that among genes being presumably under selection in terms of milk production, there are genes responsible, for example, for mammary gland development (e.g., SOSTDC1 , PYGO2 , MED1 , and CCND1 ) and immune system response (e.g., IL10RA , IL12B , and IL21 ). The most important finding of this study is that the most pronounced genetic differences between the analyzed populations were associated with β-defensin genes (e.g., DEFB1 , DEFB4A , DEFB5 , DEFB7 , DEFB10 , DEFB13 , EBD , BNBD-6 , and LAP ) located within so-called bovine cluster D on BTA27. The β-defensins are expressed mainly in the mammary gland and are antimicrobial peptides against the Gram-negative and Gram-positive bacteria, viruses, and other unicellular parasites. This suggests that antimicrobial resistance of mammary gland is of high importance during selection towards increased milk production and that genes responsible for this process are selected together with increasing levels of productivity.</description><identifier>ISSN: 1234-1983</identifier><identifier>EISSN: 2190-3883</identifier><identifier>DOI: 10.1007/s13353-019-00484-0</identifier><identifier>PMID: 30685825</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Animal Genetics and Genomics ; Animal Genetics • Original Paper ; antibacterial properties ; antibiotic resistance ; Antiinfectives and antibacterials ; Antimicrobial agents ; Antimicrobial peptides ; Antimicrobial resistance ; Biomedical and Life Sciences ; body conformation ; Breeding ; breeding programs ; Cattle ; cattle breeds ; Conformation ; Conservation ; conservation programs ; Dairy cattle ; Dairy industry ; Defensins ; Disease resistance ; Drug resistance in microorganisms ; Fertility ; Fibroblast growth factor 2 ; Gene pool ; Genes ; Genetic analysis ; Genetic distance ; Genetic resources ; genetic variation ; Genomes ; Genomics ; germplasm conservation ; Gram-positive bacteria ; Human Genetics ; Immune system ; Interleukin 1 ; Interleukin 21 ; Life Sciences ; Livestock breeding ; longevity ; mammary development ; Mammary gland ; Mammary glands ; Microbial Genetics and Genomics ; Milk ; Milk production ; nutritive value ; Parasites ; Peptides ; Plant Genetics and Genomics ; Preservation ; Resource conservation ; Signatures ; Single-nucleotide polymorphism ; Subpopulations ; Viruses</subject><ispartof>Journal of applied genetics, 2019-02, Vol.60 (1), p.87-95</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-e968b1fbec171f60b80b4a5c9dda8e2f71ae25a8fbcdcfcc6a3e855ed461ca103</citedby><cites>FETCH-LOGICAL-c574t-e968b1fbec171f60b80b4a5c9dda8e2f71ae25a8fbcdcfcc6a3e855ed461ca103</cites><orcidid>0000-0001-5979-144X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13353-019-00484-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13353-019-00484-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30685825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gurgul, Artur</creatorcontrib><creatorcontrib>Jasielczuk, I.</creatorcontrib><creatorcontrib>Semik-Gurgul, E.</creatorcontrib><creatorcontrib>Szmatoła, T.</creatorcontrib><creatorcontrib>Majewska, A.</creatorcontrib><creatorcontrib>Sosin-Bzducha, E.</creatorcontrib><creatorcontrib>Bugno-Poniewierska, M.</creatorcontrib><title>Diversifying selection signatures among divergently selected subpopulations of Polish Red cattle</title><title>Journal of applied genetics</title><addtitle>J Appl Genetics</addtitle><addtitle>J Appl Genet</addtitle><description>Polish Red cattle is one of the few indigenous breeds of European red cattle which is characterized by several desired features, such as high disease resistance, good health, longevity, good fertility, and high nutritional value of milk. Currently, Polish Red cattle population is a subject of two independent breeding programs: (i) improvement program and (ii) genetic resources conservation program. The aim of the improvement program is the genetic progress in terms of milk production and body conformation traits, while the conservation program mainly focuses on protection of the genetic resources of Polish Red cattle and preservation of the existing, original gene pool. By the analysis of F ST genetic distances across genome-wide SNP panel, we detected diversifying selection signatures among these two subpopulations and indicated (among others) the significance of DGAT1 and FGF2 genes for milk production traits in these cattle. We also found that among genes being presumably under selection in terms of milk production, there are genes responsible, for example, for mammary gland development (e.g., SOSTDC1 , PYGO2 , MED1 , and CCND1 ) and immune system response (e.g., IL10RA , IL12B , and IL21 ). The most important finding of this study is that the most pronounced genetic differences between the analyzed populations were associated with β-defensin genes (e.g., DEFB1 , DEFB4A , DEFB5 , DEFB7 , DEFB10 , DEFB13 , EBD , BNBD-6 , and LAP ) located within so-called bovine cluster D on BTA27. The β-defensins are expressed mainly in the mammary gland and are antimicrobial peptides against the Gram-negative and Gram-positive bacteria, viruses, and other unicellular parasites. This suggests that antimicrobial resistance of mammary gland is of high importance during selection towards increased milk production and that genes responsible for this process are selected together with increasing levels of productivity.</description><subject>Analysis</subject><subject>Animal Genetics and Genomics</subject><subject>Animal Genetics • Original Paper</subject><subject>antibacterial properties</subject><subject>antibiotic resistance</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial peptides</subject><subject>Antimicrobial resistance</subject><subject>Biomedical and Life Sciences</subject><subject>body conformation</subject><subject>Breeding</subject><subject>breeding programs</subject><subject>Cattle</subject><subject>cattle breeds</subject><subject>Conformation</subject><subject>Conservation</subject><subject>conservation programs</subject><subject>Dairy cattle</subject><subject>Dairy industry</subject><subject>Defensins</subject><subject>Disease resistance</subject><subject>Drug resistance in microorganisms</subject><subject>Fertility</subject><subject>Fibroblast growth factor 2</subject><subject>Gene pool</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic distance</subject><subject>Genetic resources</subject><subject>genetic variation</subject><subject>Genomes</subject><subject>Genomics</subject><subject>germplasm conservation</subject><subject>Gram-positive bacteria</subject><subject>Human Genetics</subject><subject>Immune system</subject><subject>Interleukin 1</subject><subject>Interleukin 21</subject><subject>Life Sciences</subject><subject>Livestock breeding</subject><subject>longevity</subject><subject>mammary development</subject><subject>Mammary gland</subject><subject>Mammary glands</subject><subject>Microbial Genetics and Genomics</subject><subject>Milk</subject><subject>Milk production</subject><subject>nutritive value</subject><subject>Parasites</subject><subject>Peptides</subject><subject>Plant Genetics and Genomics</subject><subject>Preservation</subject><subject>Resource conservation</subject><subject>Signatures</subject><subject>Single-nucleotide polymorphism</subject><subject>Subpopulations</subject><subject>Viruses</subject><issn>1234-1983</issn><issn>2190-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kk1rFTEYhYMo9lr9Ay5kwI2bqfmYZDIbofRDhYIiuo6ZzJtpSia5JjOF--_NeK-tFZEsAjnPOckbDkIvCT4hGLdvM2GMsxqTrsa4kU2NH6ENJR2umZTsMdoQypqadJIdoWc532DMZNPSp-iIYSG5pHyDvp-7W0jZ2Z0LY5XBg5ldDFV2Y9DzkiBXeopFGlZuhDD73QGDocpLv43bxevVk6toq8_Ru3xdfSmi0fPs4Tl6YrXP8OKwH6Nvlxdfzz7UV5_efzw7vaoNb5u5hk7IntgeDGmJFbiXuG80N90waAnUtkQD5Vra3gzGGiM0A8k5DI0gRhPMjtG7fe526ScYTHlp0l5tk5t02qmonXqoBHetxnirBGtZg1kJeHMISPHHAnlWk8sGvNcB4pIVpZRgyikmBX39F3oTlxTKeIqSlncNEay7p0btQblgY7nXrKHqtCVYCNnJlTr5B1XWAJMzMYB15fyBge4NJsWcE9i7GQlWay_Uvheq9EL96oVaf-fVn79zZ_ldhAKwPZCLFEZI9yP9J_YnJ3PFog</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Gurgul, Artur</creator><creator>Jasielczuk, I.</creator><creator>Semik-Gurgul, E.</creator><creator>Szmatoła, T.</creator><creator>Majewska, A.</creator><creator>Sosin-Bzducha, E.</creator><creator>Bugno-Poniewierska, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5979-144X</orcidid></search><sort><creationdate>20190201</creationdate><title>Diversifying selection signatures among divergently selected subpopulations of Polish Red cattle</title><author>Gurgul, Artur ; Jasielczuk, I. ; Semik-Gurgul, E. ; Szmatoła, T. ; Majewska, A. ; Sosin-Bzducha, E. ; Bugno-Poniewierska, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-e968b1fbec171f60b80b4a5c9dda8e2f71ae25a8fbcdcfcc6a3e855ed461ca103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Animal Genetics and Genomics</topic><topic>Animal Genetics • Original Paper</topic><topic>antibacterial properties</topic><topic>antibiotic resistance</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial peptides</topic><topic>Antimicrobial resistance</topic><topic>Biomedical and Life Sciences</topic><topic>body conformation</topic><topic>Breeding</topic><topic>breeding programs</topic><topic>Cattle</topic><topic>cattle breeds</topic><topic>Conformation</topic><topic>Conservation</topic><topic>conservation programs</topic><topic>Dairy cattle</topic><topic>Dairy industry</topic><topic>Defensins</topic><topic>Disease resistance</topic><topic>Drug resistance in microorganisms</topic><topic>Fertility</topic><topic>Fibroblast growth factor 2</topic><topic>Gene pool</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic distance</topic><topic>Genetic resources</topic><topic>genetic variation</topic><topic>Genomes</topic><topic>Genomics</topic><topic>germplasm conservation</topic><topic>Gram-positive bacteria</topic><topic>Human Genetics</topic><topic>Immune system</topic><topic>Interleukin 1</topic><topic>Interleukin 21</topic><topic>Life Sciences</topic><topic>Livestock breeding</topic><topic>longevity</topic><topic>mammary development</topic><topic>Mammary gland</topic><topic>Mammary glands</topic><topic>Microbial Genetics and Genomics</topic><topic>Milk</topic><topic>Milk production</topic><topic>nutritive value</topic><topic>Parasites</topic><topic>Peptides</topic><topic>Plant Genetics and Genomics</topic><topic>Preservation</topic><topic>Resource conservation</topic><topic>Signatures</topic><topic>Single-nucleotide polymorphism</topic><topic>Subpopulations</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurgul, Artur</creatorcontrib><creatorcontrib>Jasielczuk, I.</creatorcontrib><creatorcontrib>Semik-Gurgul, E.</creatorcontrib><creatorcontrib>Szmatoła, T.</creatorcontrib><creatorcontrib>Majewska, A.</creatorcontrib><creatorcontrib>Sosin-Bzducha, E.</creatorcontrib><creatorcontrib>Bugno-Poniewierska, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurgul, Artur</au><au>Jasielczuk, I.</au><au>Semik-Gurgul, E.</au><au>Szmatoła, T.</au><au>Majewska, A.</au><au>Sosin-Bzducha, E.</au><au>Bugno-Poniewierska, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversifying selection signatures among divergently selected subpopulations of Polish Red cattle</atitle><jtitle>Journal of applied genetics</jtitle><stitle>J Appl Genetics</stitle><addtitle>J Appl Genet</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>60</volume><issue>1</issue><spage>87</spage><epage>95</epage><pages>87-95</pages><issn>1234-1983</issn><eissn>2190-3883</eissn><abstract>Polish Red cattle is one of the few indigenous breeds of European red cattle which is characterized by several desired features, such as high disease resistance, good health, longevity, good fertility, and high nutritional value of milk. Currently, Polish Red cattle population is a subject of two independent breeding programs: (i) improvement program and (ii) genetic resources conservation program. The aim of the improvement program is the genetic progress in terms of milk production and body conformation traits, while the conservation program mainly focuses on protection of the genetic resources of Polish Red cattle and preservation of the existing, original gene pool. By the analysis of F ST genetic distances across genome-wide SNP panel, we detected diversifying selection signatures among these two subpopulations and indicated (among others) the significance of DGAT1 and FGF2 genes for milk production traits in these cattle. We also found that among genes being presumably under selection in terms of milk production, there are genes responsible, for example, for mammary gland development (e.g., SOSTDC1 , PYGO2 , MED1 , and CCND1 ) and immune system response (e.g., IL10RA , IL12B , and IL21 ). The most important finding of this study is that the most pronounced genetic differences between the analyzed populations were associated with β-defensin genes (e.g., DEFB1 , DEFB4A , DEFB5 , DEFB7 , DEFB10 , DEFB13 , EBD , BNBD-6 , and LAP ) located within so-called bovine cluster D on BTA27. The β-defensins are expressed mainly in the mammary gland and are antimicrobial peptides against the Gram-negative and Gram-positive bacteria, viruses, and other unicellular parasites. This suggests that antimicrobial resistance of mammary gland is of high importance during selection towards increased milk production and that genes responsible for this process are selected together with increasing levels of productivity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30685825</pmid><doi>10.1007/s13353-019-00484-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5979-144X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1234-1983
ispartof Journal of applied genetics, 2019-02, Vol.60 (1), p.87-95
issn 1234-1983
2190-3883
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6373403
source SpringerLink Journals
subjects Analysis
Animal Genetics and Genomics
Animal Genetics • Original Paper
antibacterial properties
antibiotic resistance
Antiinfectives and antibacterials
Antimicrobial agents
Antimicrobial peptides
Antimicrobial resistance
Biomedical and Life Sciences
body conformation
Breeding
breeding programs
Cattle
cattle breeds
Conformation
Conservation
conservation programs
Dairy cattle
Dairy industry
Defensins
Disease resistance
Drug resistance in microorganisms
Fertility
Fibroblast growth factor 2
Gene pool
Genes
Genetic analysis
Genetic distance
Genetic resources
genetic variation
Genomes
Genomics
germplasm conservation
Gram-positive bacteria
Human Genetics
Immune system
Interleukin 1
Interleukin 21
Life Sciences
Livestock breeding
longevity
mammary development
Mammary gland
Mammary glands
Microbial Genetics and Genomics
Milk
Milk production
nutritive value
Parasites
Peptides
Plant Genetics and Genomics
Preservation
Resource conservation
Signatures
Single-nucleotide polymorphism
Subpopulations
Viruses
title Diversifying selection signatures among divergently selected subpopulations of Polish Red cattle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversifying%20selection%20signatures%20among%20divergently%20selected%20subpopulations%20of%20Polish%20Red%20cattle&rft.jtitle=Journal%20of%20applied%20genetics&rft.au=Gurgul,%20Artur&rft.date=2019-02-01&rft.volume=60&rft.issue=1&rft.spage=87&rft.epage=95&rft.pages=87-95&rft.issn=1234-1983&rft.eissn=2190-3883&rft_id=info:doi/10.1007/s13353-019-00484-0&rft_dat=%3Cgale_pubme%3EA710668989%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175941639&rft_id=info:pmid/30685825&rft_galeid=A710668989&rfr_iscdi=true