Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD

Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2018, Vol.2018, p.1319-1328
Hauptverfasser: Jain, Sukrit S, Sarkar, Indra Neil, Stey, Paul C, Anand, Rajsavi S, Biron, Dustin R, Chen, Elizabeth S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1328
container_issue
container_start_page 1319
container_title AMIA ... Annual Symposium proceedings
container_volume 2018
creator Jain, Sukrit S
Sarkar, Indra Neil
Stey, Paul C
Anand, Rajsavi S
Biron, Dustin R
Chen, Elizabeth S
description Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the combined effect of demographic factors and comorbidities. Using the MIMIC-III database, this study examined factors associated with mortality in a model incorporating comorbidities, comorbidity indices, and demographic factors. After determining associations between predictive variables and mortality through univariate and multivariate binomial logistic regression, three predictive models were developed: (1) univariate GLM-derived logistic, (2) Mean Gini-derived logistic (MGDL), and (3) random forest. The MGDL model best predicted mortality with an AUROC of 0.778. Variables with the greatest relative importance in determining mortality included the Charlson Comorbidity Index, Elixhauser Index, male, and arrhythmia. The results support the potential of using the MGDL model and need for further work in exploring demographic factors.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6371239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187034352</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-a838e2bb92a633918c3501e344654a2c544def51fcf625c363e899667f821bd83</originalsourceid><addsrcrecordid>eNpVkE9Lw0AQxYMgtla_guzRSyD7N5uLUNJWC5X2YM9hs5m0K0k27m6rvfvBDVhFT8Pw3vzeYy6iMeY8i1mSilF07f1rkrCUS3EVjWgiMcepGEefW2-6HZpBa3dO9Xuj0ULpYJ1HqqtQblvrSlOZYMCjYAfjERrbI4U2DiqjgzkCerYVNKi2Di3z7bC5oBoTTsh0aKOGyy549G7CHk31IQCafygNrhwU26F8vZndRJe1ajzcnuck2i7mL_lTvFo_LvPpKu6xxCFWkkogZZkRJSjNsNSUJxgoY4IzRTRnrIKa41rXgnBNBQWZZUKktSS4rCSdRA_f3P5QtlDpoZhTTdE70yp3KqwyxX-lM_tiZ4-FoCkmNBsA92eAs28H8KFojdfQNKoDe_AFwTJNKKOcDNa7v1m_IT-vp1_ZNYCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187034352</pqid></control><display><type>article</type><title>Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jain, Sukrit S ; Sarkar, Indra Neil ; Stey, Paul C ; Anand, Rajsavi S ; Biron, Dustin R ; Chen, Elizabeth S</creator><creatorcontrib>Jain, Sukrit S ; Sarkar, Indra Neil ; Stey, Paul C ; Anand, Rajsavi S ; Biron, Dustin R ; Chen, Elizabeth S</creatorcontrib><description>Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the combined effect of demographic factors and comorbidities. Using the MIMIC-III database, this study examined factors associated with mortality in a model incorporating comorbidities, comorbidity indices, and demographic factors. After determining associations between predictive variables and mortality through univariate and multivariate binomial logistic regression, three predictive models were developed: (1) univariate GLM-derived logistic, (2) Mean Gini-derived logistic (MGDL), and (3) random forest. The MGDL model best predicted mortality with an AUROC of 0.778. Variables with the greatest relative importance in determining mortality included the Charlson Comorbidity Index, Elixhauser Index, male, and arrhythmia. The results support the potential of using the MGDL model and need for further work in exploring demographic factors.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 30815176</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Comorbidity ; Female ; Hospital Mortality ; Humans ; Intensive Care Units ; Logistic Models ; Machine Learning ; Male ; Middle Aged ; Prognosis ; Pulmonary Disease, Chronic Obstructive - complications ; Pulmonary Disease, Chronic Obstructive - mortality ; ROC Curve ; Socioeconomic Factors</subject><ispartof>AMIA ... Annual Symposium proceedings, 2018, Vol.2018, p.1319-1328</ispartof><rights>2018 AMIA - All rights reserved. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371239/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371239/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30815176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Sukrit S</creatorcontrib><creatorcontrib>Sarkar, Indra Neil</creatorcontrib><creatorcontrib>Stey, Paul C</creatorcontrib><creatorcontrib>Anand, Rajsavi S</creatorcontrib><creatorcontrib>Biron, Dustin R</creatorcontrib><creatorcontrib>Chen, Elizabeth S</creatorcontrib><title>Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the combined effect of demographic factors and comorbidities. Using the MIMIC-III database, this study examined factors associated with mortality in a model incorporating comorbidities, comorbidity indices, and demographic factors. After determining associations between predictive variables and mortality through univariate and multivariate binomial logistic regression, three predictive models were developed: (1) univariate GLM-derived logistic, (2) Mean Gini-derived logistic (MGDL), and (3) random forest. The MGDL model best predicted mortality with an AUROC of 0.778. Variables with the greatest relative importance in determining mortality included the Charlson Comorbidity Index, Elixhauser Index, male, and arrhythmia. The results support the potential of using the MGDL model and need for further work in exploring demographic factors.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Comorbidity</subject><subject>Female</subject><subject>Hospital Mortality</subject><subject>Humans</subject><subject>Intensive Care Units</subject><subject>Logistic Models</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Prognosis</subject><subject>Pulmonary Disease, Chronic Obstructive - complications</subject><subject>Pulmonary Disease, Chronic Obstructive - mortality</subject><subject>ROC Curve</subject><subject>Socioeconomic Factors</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE9Lw0AQxYMgtla_guzRSyD7N5uLUNJWC5X2YM9hs5m0K0k27m6rvfvBDVhFT8Pw3vzeYy6iMeY8i1mSilF07f1rkrCUS3EVjWgiMcepGEefW2-6HZpBa3dO9Xuj0ULpYJ1HqqtQblvrSlOZYMCjYAfjERrbI4U2DiqjgzkCerYVNKi2Di3z7bC5oBoTTsh0aKOGyy549G7CHk31IQCafygNrhwU26F8vZndRJe1ajzcnuck2i7mL_lTvFo_LvPpKu6xxCFWkkogZZkRJSjNsNSUJxgoY4IzRTRnrIKa41rXgnBNBQWZZUKktSS4rCSdRA_f3P5QtlDpoZhTTdE70yp3KqwyxX-lM_tiZ4-FoCkmNBsA92eAs28H8KFojdfQNKoDe_AFwTJNKKOcDNa7v1m_IT-vp1_ZNYCQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Jain, Sukrit S</creator><creator>Sarkar, Indra Neil</creator><creator>Stey, Paul C</creator><creator>Anand, Rajsavi S</creator><creator>Biron, Dustin R</creator><creator>Chen, Elizabeth S</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2018</creationdate><title>Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD</title><author>Jain, Sukrit S ; Sarkar, Indra Neil ; Stey, Paul C ; Anand, Rajsavi S ; Biron, Dustin R ; Chen, Elizabeth S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-a838e2bb92a633918c3501e344654a2c544def51fcf625c363e899667f821bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Comorbidity</topic><topic>Female</topic><topic>Hospital Mortality</topic><topic>Humans</topic><topic>Intensive Care Units</topic><topic>Logistic Models</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Prognosis</topic><topic>Pulmonary Disease, Chronic Obstructive - complications</topic><topic>Pulmonary Disease, Chronic Obstructive - mortality</topic><topic>ROC Curve</topic><topic>Socioeconomic Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Sukrit S</creatorcontrib><creatorcontrib>Sarkar, Indra Neil</creatorcontrib><creatorcontrib>Stey, Paul C</creatorcontrib><creatorcontrib>Anand, Rajsavi S</creatorcontrib><creatorcontrib>Biron, Dustin R</creatorcontrib><creatorcontrib>Chen, Elizabeth S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Sukrit S</au><au>Sarkar, Indra Neil</au><au>Stey, Paul C</au><au>Anand, Rajsavi S</au><au>Biron, Dustin R</au><au>Chen, Elizabeth S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2018</date><risdate>2018</risdate><volume>2018</volume><spage>1319</spage><epage>1328</epage><pages>1319-1328</pages><eissn>1559-4076</eissn><abstract>Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the combined effect of demographic factors and comorbidities. Using the MIMIC-III database, this study examined factors associated with mortality in a model incorporating comorbidities, comorbidity indices, and demographic factors. After determining associations between predictive variables and mortality through univariate and multivariate binomial logistic regression, three predictive models were developed: (1) univariate GLM-derived logistic, (2) Mean Gini-derived logistic (MGDL), and (3) random forest. The MGDL model best predicted mortality with an AUROC of 0.778. Variables with the greatest relative importance in determining mortality included the Charlson Comorbidity Index, Elixhauser Index, male, and arrhythmia. The results support the potential of using the MGDL model and need for further work in exploring demographic factors.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>30815176</pmid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2018, Vol.2018, p.1319-1328
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6371239
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adult
Aged
Aged, 80 and over
Comorbidity
Female
Hospital Mortality
Humans
Intensive Care Units
Logistic Models
Machine Learning
Male
Middle Aged
Prognosis
Pulmonary Disease, Chronic Obstructive - complications
Pulmonary Disease, Chronic Obstructive - mortality
ROC Curve
Socioeconomic Factors
title Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Demographic%20Factors%20and%20Comorbidities%20to%20Develop%20a%20Predictive%20Model%20for%20ICU%20Mortality%20in%20Patients%20with%20Acute%20Exacerbation%20COPD&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Jain,%20Sukrit%20S&rft.date=2018&rft.volume=2018&rft.spage=1319&rft.epage=1328&rft.pages=1319-1328&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2187034352%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187034352&rft_id=info:pmid/30815176&rfr_iscdi=true