Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD
Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the co...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2018, Vol.2018, p.1319-1328 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1328 |
---|---|
container_issue | |
container_start_page | 1319 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2018 |
creator | Jain, Sukrit S Sarkar, Indra Neil Stey, Paul C Anand, Rajsavi S Biron, Dustin R Chen, Elizabeth S |
description | Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the combined effect of demographic factors and comorbidities. Using the MIMIC-III database, this study examined factors associated with mortality in a model incorporating comorbidities, comorbidity indices, and demographic factors. After determining associations between predictive variables and mortality through univariate and multivariate binomial logistic regression, three predictive models were developed: (1) univariate GLM-derived logistic, (2) Mean Gini-derived logistic (MGDL), and (3) random forest. The MGDL model best predicted mortality with an AUROC of 0.778. Variables with the greatest relative importance in determining mortality included the Charlson Comorbidity Index, Elixhauser Index, male, and arrhythmia. The results support the potential of using the MGDL model and need for further work in exploring demographic factors. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6371239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187034352</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-a838e2bb92a633918c3501e344654a2c544def51fcf625c363e899667f821bd83</originalsourceid><addsrcrecordid>eNpVkE9Lw0AQxYMgtla_guzRSyD7N5uLUNJWC5X2YM9hs5m0K0k27m6rvfvBDVhFT8Pw3vzeYy6iMeY8i1mSilF07f1rkrCUS3EVjWgiMcepGEefW2-6HZpBa3dO9Xuj0ULpYJ1HqqtQblvrSlOZYMCjYAfjERrbI4U2DiqjgzkCerYVNKi2Di3z7bC5oBoTTsh0aKOGyy549G7CHk31IQCafygNrhwU26F8vZndRJe1ajzcnuck2i7mL_lTvFo_LvPpKu6xxCFWkkogZZkRJSjNsNSUJxgoY4IzRTRnrIKa41rXgnBNBQWZZUKktSS4rCSdRA_f3P5QtlDpoZhTTdE70yp3KqwyxX-lM_tiZ4-FoCkmNBsA92eAs28H8KFojdfQNKoDe_AFwTJNKKOcDNa7v1m_IT-vp1_ZNYCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187034352</pqid></control><display><type>article</type><title>Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jain, Sukrit S ; Sarkar, Indra Neil ; Stey, Paul C ; Anand, Rajsavi S ; Biron, Dustin R ; Chen, Elizabeth S</creator><creatorcontrib>Jain, Sukrit S ; Sarkar, Indra Neil ; Stey, Paul C ; Anand, Rajsavi S ; Biron, Dustin R ; Chen, Elizabeth S</creatorcontrib><description>Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the combined effect of demographic factors and comorbidities. Using the MIMIC-III database, this study examined factors associated with mortality in a model incorporating comorbidities, comorbidity indices, and demographic factors. After determining associations between predictive variables and mortality through univariate and multivariate binomial logistic regression, three predictive models were developed: (1) univariate GLM-derived logistic, (2) Mean Gini-derived logistic (MGDL), and (3) random forest. The MGDL model best predicted mortality with an AUROC of 0.778. Variables with the greatest relative importance in determining mortality included the Charlson Comorbidity Index, Elixhauser Index, male, and arrhythmia. The results support the potential of using the MGDL model and need for further work in exploring demographic factors.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 30815176</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Comorbidity ; Female ; Hospital Mortality ; Humans ; Intensive Care Units ; Logistic Models ; Machine Learning ; Male ; Middle Aged ; Prognosis ; Pulmonary Disease, Chronic Obstructive - complications ; Pulmonary Disease, Chronic Obstructive - mortality ; ROC Curve ; Socioeconomic Factors</subject><ispartof>AMIA ... Annual Symposium proceedings, 2018, Vol.2018, p.1319-1328</ispartof><rights>2018 AMIA - All rights reserved. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371239/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371239/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30815176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Sukrit S</creatorcontrib><creatorcontrib>Sarkar, Indra Neil</creatorcontrib><creatorcontrib>Stey, Paul C</creatorcontrib><creatorcontrib>Anand, Rajsavi S</creatorcontrib><creatorcontrib>Biron, Dustin R</creatorcontrib><creatorcontrib>Chen, Elizabeth S</creatorcontrib><title>Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the combined effect of demographic factors and comorbidities. Using the MIMIC-III database, this study examined factors associated with mortality in a model incorporating comorbidities, comorbidity indices, and demographic factors. After determining associations between predictive variables and mortality through univariate and multivariate binomial logistic regression, three predictive models were developed: (1) univariate GLM-derived logistic, (2) Mean Gini-derived logistic (MGDL), and (3) random forest. The MGDL model best predicted mortality with an AUROC of 0.778. Variables with the greatest relative importance in determining mortality included the Charlson Comorbidity Index, Elixhauser Index, male, and arrhythmia. The results support the potential of using the MGDL model and need for further work in exploring demographic factors.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Comorbidity</subject><subject>Female</subject><subject>Hospital Mortality</subject><subject>Humans</subject><subject>Intensive Care Units</subject><subject>Logistic Models</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Prognosis</subject><subject>Pulmonary Disease, Chronic Obstructive - complications</subject><subject>Pulmonary Disease, Chronic Obstructive - mortality</subject><subject>ROC Curve</subject><subject>Socioeconomic Factors</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE9Lw0AQxYMgtla_guzRSyD7N5uLUNJWC5X2YM9hs5m0K0k27m6rvfvBDVhFT8Pw3vzeYy6iMeY8i1mSilF07f1rkrCUS3EVjWgiMcepGEefW2-6HZpBa3dO9Xuj0ULpYJ1HqqtQblvrSlOZYMCjYAfjERrbI4U2DiqjgzkCerYVNKi2Di3z7bC5oBoTTsh0aKOGyy549G7CHk31IQCafygNrhwU26F8vZndRJe1ajzcnuck2i7mL_lTvFo_LvPpKu6xxCFWkkogZZkRJSjNsNSUJxgoY4IzRTRnrIKa41rXgnBNBQWZZUKktSS4rCSdRA_f3P5QtlDpoZhTTdE70yp3KqwyxX-lM_tiZ4-FoCkmNBsA92eAs28H8KFojdfQNKoDe_AFwTJNKKOcDNa7v1m_IT-vp1_ZNYCQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Jain, Sukrit S</creator><creator>Sarkar, Indra Neil</creator><creator>Stey, Paul C</creator><creator>Anand, Rajsavi S</creator><creator>Biron, Dustin R</creator><creator>Chen, Elizabeth S</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2018</creationdate><title>Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD</title><author>Jain, Sukrit S ; Sarkar, Indra Neil ; Stey, Paul C ; Anand, Rajsavi S ; Biron, Dustin R ; Chen, Elizabeth S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-a838e2bb92a633918c3501e344654a2c544def51fcf625c363e899667f821bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Comorbidity</topic><topic>Female</topic><topic>Hospital Mortality</topic><topic>Humans</topic><topic>Intensive Care Units</topic><topic>Logistic Models</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Prognosis</topic><topic>Pulmonary Disease, Chronic Obstructive - complications</topic><topic>Pulmonary Disease, Chronic Obstructive - mortality</topic><topic>ROC Curve</topic><topic>Socioeconomic Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Sukrit S</creatorcontrib><creatorcontrib>Sarkar, Indra Neil</creatorcontrib><creatorcontrib>Stey, Paul C</creatorcontrib><creatorcontrib>Anand, Rajsavi S</creatorcontrib><creatorcontrib>Biron, Dustin R</creatorcontrib><creatorcontrib>Chen, Elizabeth S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Sukrit S</au><au>Sarkar, Indra Neil</au><au>Stey, Paul C</au><au>Anand, Rajsavi S</au><au>Biron, Dustin R</au><au>Chen, Elizabeth S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2018</date><risdate>2018</risdate><volume>2018</volume><spage>1319</spage><epage>1328</epage><pages>1319-1328</pages><eissn>1559-4076</eissn><abstract>Recognizing factors associated with mortality in patients admitted to the ICU with acute exacerbation of chronic obstructive pulmonary disease could reduce healthcare costs and improve end-of-life care. Previous studies have identified possible predictive variables, but analysis is lacking on the combined effect of demographic factors and comorbidities. Using the MIMIC-III database, this study examined factors associated with mortality in a model incorporating comorbidities, comorbidity indices, and demographic factors. After determining associations between predictive variables and mortality through univariate and multivariate binomial logistic regression, three predictive models were developed: (1) univariate GLM-derived logistic, (2) Mean Gini-derived logistic (MGDL), and (3) random forest. The MGDL model best predicted mortality with an AUROC of 0.778. Variables with the greatest relative importance in determining mortality included the Charlson Comorbidity Index, Elixhauser Index, male, and arrhythmia. The results support the potential of using the MGDL model and need for further work in exploring demographic factors.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>30815176</pmid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2018, Vol.2018, p.1319-1328 |
issn | 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6371239 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Aged Aged, 80 and over Comorbidity Female Hospital Mortality Humans Intensive Care Units Logistic Models Machine Learning Male Middle Aged Prognosis Pulmonary Disease, Chronic Obstructive - complications Pulmonary Disease, Chronic Obstructive - mortality ROC Curve Socioeconomic Factors |
title | Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Demographic%20Factors%20and%20Comorbidities%20to%20Develop%20a%20Predictive%20Model%20for%20ICU%20Mortality%20in%20Patients%20with%20Acute%20Exacerbation%20COPD&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Jain,%20Sukrit%20S&rft.date=2018&rft.volume=2018&rft.spage=1319&rft.epage=1328&rft.pages=1319-1328&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2187034352%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187034352&rft_id=info:pmid/30815176&rfr_iscdi=true |