Modeling the dynamic behavior of biochemical regulatory networks

•Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Sto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2019-02, Vol.462, p.514-527
Hauptverfasser: Tyson, John J., Laomettachit, Teeraphan, Kraikivski, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 527
container_issue
container_start_page 514
container_title Journal of theoretical biology
container_volume 462
creator Tyson, John J.
Laomettachit, Teeraphan
Kraikivski, Pavel
description •Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Stochastic differential equations can capture mRNA noise accurately and efficiently. Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks have evolved over the last 50 years as both the knowledge of these molecular control systems and the power of computing resources have increased. Here, we review a number of common modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully non-linear ordinary differential equations, and stochastic models (including hybrid deterministic/stochastic approaches). We discuss the pro's and con's of each approach, to help novice modelers choose a modeling strategy suitable to their problem, based on the type and bounty of available experimental information. We illustrate different modeling strategies in terms of some abstract network motifs, and in the specific context of cell cycle regulation.
doi_str_mv 10.1016/j.jtbi.2018.11.034
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6369921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519318305873</els_id><sourcerecordid>2149019706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2413e7bc12e18a97fdaf79d910342465904cdcb427dc60eb3d63ad4c68c555a83</originalsourceid><addsrcrecordid>eNp9kE-P0zAQxS0EYrsLX4ADypFLwoz_JZYQAq1gQVrEBc6WY09alzRe7LSo355UXVZw4TTSzJs3b36MvUBoEFC_3jbbuY8NB-waxAaEfMRWCEbVnZL4mK0AOK8VGnHBLkvZAoCRQj9lFwIUcAlmxd59SYHGOK2reUNVOE5uF33V08YdYspVGqo-Jr-hpevGKtN6P7o55WM10fwr5R_lGXsyuLHQ8_t6xb5__PDt-lN9-_Xm8_X729pLpeaaSxTU9h45YedMOwQ3tCYYXFJzqZUB6YPvJW-D10C9CFq4IL3uvFLKdeKKvT373u37HQVP05zdaO9y3Ll8tMlF--9kihu7TgerhTaG42Lw6t4gp597KrPdxeJpHN1EaV8sR2kATQt6kfKz1OdUSqbh4QyCPaG3W3tCb0_oLaJdnliWXv4d8GHlD-tF8OYsoAXTIVK2xUeaPIWYyc82pPg__9_tb5Zu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149019706</pqid></control><display><type>article</type><title>Modeling the dynamic behavior of biochemical regulatory networks</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tyson, John J. ; Laomettachit, Teeraphan ; Kraikivski, Pavel</creator><creatorcontrib>Tyson, John J. ; Laomettachit, Teeraphan ; Kraikivski, Pavel</creatorcontrib><description>•Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Stochastic differential equations can capture mRNA noise accurately and efficiently. Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks have evolved over the last 50 years as both the knowledge of these molecular control systems and the power of computing resources have increased. Here, we review a number of common modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully non-linear ordinary differential equations, and stochastic models (including hybrid deterministic/stochastic approaches). We discuss the pro's and con's of each approach, to help novice modelers choose a modeling strategy suitable to their problem, based on the type and bounty of available experimental information. We illustrate different modeling strategies in terms of some abstract network motifs, and in the specific context of cell cycle regulation.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2018.11.034</identifier><identifier>PMID: 30502409</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Bifurcation theory ; Cell Cycle Checkpoints ; Dynamic models ; Gene Regulatory Networks ; Humans ; Logical models ; Models, Biological ; Molecular regulatory networks ; Piecewise-linear odes ; Signaling motifs ; Stochastic models</subject><ispartof>Journal of theoretical biology, 2019-02, Vol.462, p.514-527</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2413e7bc12e18a97fdaf79d910342465904cdcb427dc60eb3d63ad4c68c555a83</citedby><cites>FETCH-LOGICAL-c455t-2413e7bc12e18a97fdaf79d910342465904cdcb427dc60eb3d63ad4c68c555a83</cites><orcidid>0000-0003-3194-1391 ; 0000-0001-7560-6013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2018.11.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30502409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tyson, John J.</creatorcontrib><creatorcontrib>Laomettachit, Teeraphan</creatorcontrib><creatorcontrib>Kraikivski, Pavel</creatorcontrib><title>Modeling the dynamic behavior of biochemical regulatory networks</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Stochastic differential equations can capture mRNA noise accurately and efficiently. Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks have evolved over the last 50 years as both the knowledge of these molecular control systems and the power of computing resources have increased. Here, we review a number of common modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully non-linear ordinary differential equations, and stochastic models (including hybrid deterministic/stochastic approaches). We discuss the pro's and con's of each approach, to help novice modelers choose a modeling strategy suitable to their problem, based on the type and bounty of available experimental information. We illustrate different modeling strategies in terms of some abstract network motifs, and in the specific context of cell cycle regulation.</description><subject>Animals</subject><subject>Bifurcation theory</subject><subject>Cell Cycle Checkpoints</subject><subject>Dynamic models</subject><subject>Gene Regulatory Networks</subject><subject>Humans</subject><subject>Logical models</subject><subject>Models, Biological</subject><subject>Molecular regulatory networks</subject><subject>Piecewise-linear odes</subject><subject>Signaling motifs</subject><subject>Stochastic models</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE-P0zAQxS0EYrsLX4ADypFLwoz_JZYQAq1gQVrEBc6WY09alzRe7LSo355UXVZw4TTSzJs3b36MvUBoEFC_3jbbuY8NB-waxAaEfMRWCEbVnZL4mK0AOK8VGnHBLkvZAoCRQj9lFwIUcAlmxd59SYHGOK2reUNVOE5uF33V08YdYspVGqo-Jr-hpevGKtN6P7o55WM10fwr5R_lGXsyuLHQ8_t6xb5__PDt-lN9-_Xm8_X729pLpeaaSxTU9h45YedMOwQ3tCYYXFJzqZUB6YPvJW-D10C9CFq4IL3uvFLKdeKKvT373u37HQVP05zdaO9y3Ll8tMlF--9kihu7TgerhTaG42Lw6t4gp597KrPdxeJpHN1EaV8sR2kATQt6kfKz1OdUSqbh4QyCPaG3W3tCb0_oLaJdnliWXv4d8GHlD-tF8OYsoAXTIVK2xUeaPIWYyc82pPg__9_tb5Zu</recordid><startdate>20190207</startdate><enddate>20190207</enddate><creator>Tyson, John J.</creator><creator>Laomettachit, Teeraphan</creator><creator>Kraikivski, Pavel</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3194-1391</orcidid><orcidid>https://orcid.org/0000-0001-7560-6013</orcidid></search><sort><creationdate>20190207</creationdate><title>Modeling the dynamic behavior of biochemical regulatory networks</title><author>Tyson, John J. ; Laomettachit, Teeraphan ; Kraikivski, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2413e7bc12e18a97fdaf79d910342465904cdcb427dc60eb3d63ad4c68c555a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Bifurcation theory</topic><topic>Cell Cycle Checkpoints</topic><topic>Dynamic models</topic><topic>Gene Regulatory Networks</topic><topic>Humans</topic><topic>Logical models</topic><topic>Models, Biological</topic><topic>Molecular regulatory networks</topic><topic>Piecewise-linear odes</topic><topic>Signaling motifs</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyson, John J.</creatorcontrib><creatorcontrib>Laomettachit, Teeraphan</creatorcontrib><creatorcontrib>Kraikivski, Pavel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyson, John J.</au><au>Laomettachit, Teeraphan</au><au>Kraikivski, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the dynamic behavior of biochemical regulatory networks</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2019-02-07</date><risdate>2019</risdate><volume>462</volume><spage>514</spage><epage>527</epage><pages>514-527</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>•Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Stochastic differential equations can capture mRNA noise accurately and efficiently. Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks have evolved over the last 50 years as both the knowledge of these molecular control systems and the power of computing resources have increased. Here, we review a number of common modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully non-linear ordinary differential equations, and stochastic models (including hybrid deterministic/stochastic approaches). We discuss the pro's and con's of each approach, to help novice modelers choose a modeling strategy suitable to their problem, based on the type and bounty of available experimental information. We illustrate different modeling strategies in terms of some abstract network motifs, and in the specific context of cell cycle regulation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30502409</pmid><doi>10.1016/j.jtbi.2018.11.034</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3194-1391</orcidid><orcidid>https://orcid.org/0000-0001-7560-6013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2019-02, Vol.462, p.514-527
issn 0022-5193
1095-8541
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6369921
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Bifurcation theory
Cell Cycle Checkpoints
Dynamic models
Gene Regulatory Networks
Humans
Logical models
Models, Biological
Molecular regulatory networks
Piecewise-linear odes
Signaling motifs
Stochastic models
title Modeling the dynamic behavior of biochemical regulatory networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20dynamic%20behavior%20of%20biochemical%20regulatory%20networks&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Tyson,%20John%20J.&rft.date=2019-02-07&rft.volume=462&rft.spage=514&rft.epage=527&rft.pages=514-527&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2018.11.034&rft_dat=%3Cproquest_pubme%3E2149019706%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149019706&rft_id=info:pmid/30502409&rft_els_id=S0022519318305873&rfr_iscdi=true