Modeling the dynamic behavior of biochemical regulatory networks
•Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Sto...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2019-02, Vol.462, p.514-527 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 527 |
---|---|
container_issue | |
container_start_page | 514 |
container_title | Journal of theoretical biology |
container_volume | 462 |
creator | Tyson, John J. Laomettachit, Teeraphan Kraikivski, Pavel |
description | •Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Stochastic differential equations can capture mRNA noise accurately and efficiently.
Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks have evolved over the last 50 years as both the knowledge of these molecular control systems and the power of computing resources have increased. Here, we review a number of common modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully non-linear ordinary differential equations, and stochastic models (including hybrid deterministic/stochastic approaches). We discuss the pro's and con's of each approach, to help novice modelers choose a modeling strategy suitable to their problem, based on the type and bounty of available experimental information. We illustrate different modeling strategies in terms of some abstract network motifs, and in the specific context of cell cycle regulation. |
doi_str_mv | 10.1016/j.jtbi.2018.11.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6369921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519318305873</els_id><sourcerecordid>2149019706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2413e7bc12e18a97fdaf79d910342465904cdcb427dc60eb3d63ad4c68c555a83</originalsourceid><addsrcrecordid>eNp9kE-P0zAQxS0EYrsLX4ADypFLwoz_JZYQAq1gQVrEBc6WY09alzRe7LSo355UXVZw4TTSzJs3b36MvUBoEFC_3jbbuY8NB-waxAaEfMRWCEbVnZL4mK0AOK8VGnHBLkvZAoCRQj9lFwIUcAlmxd59SYHGOK2reUNVOE5uF33V08YdYspVGqo-Jr-hpevGKtN6P7o55WM10fwr5R_lGXsyuLHQ8_t6xb5__PDt-lN9-_Xm8_X729pLpeaaSxTU9h45YedMOwQ3tCYYXFJzqZUB6YPvJW-D10C9CFq4IL3uvFLKdeKKvT373u37HQVP05zdaO9y3Ll8tMlF--9kihu7TgerhTaG42Lw6t4gp597KrPdxeJpHN1EaV8sR2kATQt6kfKz1OdUSqbh4QyCPaG3W3tCb0_oLaJdnliWXv4d8GHlD-tF8OYsoAXTIVK2xUeaPIWYyc82pPg__9_tb5Zu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149019706</pqid></control><display><type>article</type><title>Modeling the dynamic behavior of biochemical regulatory networks</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tyson, John J. ; Laomettachit, Teeraphan ; Kraikivski, Pavel</creator><creatorcontrib>Tyson, John J. ; Laomettachit, Teeraphan ; Kraikivski, Pavel</creatorcontrib><description>•Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Stochastic differential equations can capture mRNA noise accurately and efficiently.
Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks have evolved over the last 50 years as both the knowledge of these molecular control systems and the power of computing resources have increased. Here, we review a number of common modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully non-linear ordinary differential equations, and stochastic models (including hybrid deterministic/stochastic approaches). We discuss the pro's and con's of each approach, to help novice modelers choose a modeling strategy suitable to their problem, based on the type and bounty of available experimental information. We illustrate different modeling strategies in terms of some abstract network motifs, and in the specific context of cell cycle regulation.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2018.11.034</identifier><identifier>PMID: 30502409</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Bifurcation theory ; Cell Cycle Checkpoints ; Dynamic models ; Gene Regulatory Networks ; Humans ; Logical models ; Models, Biological ; Molecular regulatory networks ; Piecewise-linear odes ; Signaling motifs ; Stochastic models</subject><ispartof>Journal of theoretical biology, 2019-02, Vol.462, p.514-527</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2413e7bc12e18a97fdaf79d910342465904cdcb427dc60eb3d63ad4c68c555a83</citedby><cites>FETCH-LOGICAL-c455t-2413e7bc12e18a97fdaf79d910342465904cdcb427dc60eb3d63ad4c68c555a83</cites><orcidid>0000-0003-3194-1391 ; 0000-0001-7560-6013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2018.11.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30502409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tyson, John J.</creatorcontrib><creatorcontrib>Laomettachit, Teeraphan</creatorcontrib><creatorcontrib>Kraikivski, Pavel</creatorcontrib><title>Modeling the dynamic behavior of biochemical regulatory networks</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Stochastic differential equations can capture mRNA noise accurately and efficiently.
Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks have evolved over the last 50 years as both the knowledge of these molecular control systems and the power of computing resources have increased. Here, we review a number of common modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully non-linear ordinary differential equations, and stochastic models (including hybrid deterministic/stochastic approaches). We discuss the pro's and con's of each approach, to help novice modelers choose a modeling strategy suitable to their problem, based on the type and bounty of available experimental information. We illustrate different modeling strategies in terms of some abstract network motifs, and in the specific context of cell cycle regulation.</description><subject>Animals</subject><subject>Bifurcation theory</subject><subject>Cell Cycle Checkpoints</subject><subject>Dynamic models</subject><subject>Gene Regulatory Networks</subject><subject>Humans</subject><subject>Logical models</subject><subject>Models, Biological</subject><subject>Molecular regulatory networks</subject><subject>Piecewise-linear odes</subject><subject>Signaling motifs</subject><subject>Stochastic models</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE-P0zAQxS0EYrsLX4ADypFLwoz_JZYQAq1gQVrEBc6WY09alzRe7LSo355UXVZw4TTSzJs3b36MvUBoEFC_3jbbuY8NB-waxAaEfMRWCEbVnZL4mK0AOK8VGnHBLkvZAoCRQj9lFwIUcAlmxd59SYHGOK2reUNVOE5uF33V08YdYspVGqo-Jr-hpevGKtN6P7o55WM10fwr5R_lGXsyuLHQ8_t6xb5__PDt-lN9-_Xm8_X729pLpeaaSxTU9h45YedMOwQ3tCYYXFJzqZUB6YPvJW-D10C9CFq4IL3uvFLKdeKKvT373u37HQVP05zdaO9y3Ll8tMlF--9kihu7TgerhTaG42Lw6t4gp597KrPdxeJpHN1EaV8sR2kATQt6kfKz1OdUSqbh4QyCPaG3W3tCb0_oLaJdnliWXv4d8GHlD-tF8OYsoAXTIVK2xUeaPIWYyc82pPg__9_tb5Zu</recordid><startdate>20190207</startdate><enddate>20190207</enddate><creator>Tyson, John J.</creator><creator>Laomettachit, Teeraphan</creator><creator>Kraikivski, Pavel</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3194-1391</orcidid><orcidid>https://orcid.org/0000-0001-7560-6013</orcidid></search><sort><creationdate>20190207</creationdate><title>Modeling the dynamic behavior of biochemical regulatory networks</title><author>Tyson, John J. ; Laomettachit, Teeraphan ; Kraikivski, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2413e7bc12e18a97fdaf79d910342465904cdcb427dc60eb3d63ad4c68c555a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Bifurcation theory</topic><topic>Cell Cycle Checkpoints</topic><topic>Dynamic models</topic><topic>Gene Regulatory Networks</topic><topic>Humans</topic><topic>Logical models</topic><topic>Models, Biological</topic><topic>Molecular regulatory networks</topic><topic>Piecewise-linear odes</topic><topic>Signaling motifs</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyson, John J.</creatorcontrib><creatorcontrib>Laomettachit, Teeraphan</creatorcontrib><creatorcontrib>Kraikivski, Pavel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyson, John J.</au><au>Laomettachit, Teeraphan</au><au>Kraikivski, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the dynamic behavior of biochemical regulatory networks</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2019-02-07</date><risdate>2019</risdate><volume>462</volume><spage>514</spage><epage>527</epage><pages>514-527</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>•Mathematical models are vital tools for understanding molecular regulatory networks.•Logical models give qualitative insights but lack quantitative details.•Piecewise-linear ODE models can be improved by smoothing the step function.•A ‘standard component’ approach is both flexible and accurate.•Stochastic differential equations can capture mRNA noise accurately and efficiently.
Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks have evolved over the last 50 years as both the knowledge of these molecular control systems and the power of computing resources have increased. Here, we review a number of common modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully non-linear ordinary differential equations, and stochastic models (including hybrid deterministic/stochastic approaches). We discuss the pro's and con's of each approach, to help novice modelers choose a modeling strategy suitable to their problem, based on the type and bounty of available experimental information. We illustrate different modeling strategies in terms of some abstract network motifs, and in the specific context of cell cycle regulation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30502409</pmid><doi>10.1016/j.jtbi.2018.11.034</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3194-1391</orcidid><orcidid>https://orcid.org/0000-0001-7560-6013</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2019-02, Vol.462, p.514-527 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6369921 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Bifurcation theory Cell Cycle Checkpoints Dynamic models Gene Regulatory Networks Humans Logical models Models, Biological Molecular regulatory networks Piecewise-linear odes Signaling motifs Stochastic models |
title | Modeling the dynamic behavior of biochemical regulatory networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20dynamic%20behavior%20of%20biochemical%20regulatory%20networks&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Tyson,%20John%20J.&rft.date=2019-02-07&rft.volume=462&rft.spage=514&rft.epage=527&rft.pages=514-527&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2018.11.034&rft_dat=%3Cproquest_pubme%3E2149019706%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149019706&rft_id=info:pmid/30502409&rft_els_id=S0022519318305873&rfr_iscdi=true |