Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors

One of the most puzzling problems of high temperature cuprate superconductor is the pseudogap phase (PG) at temperatures above the superconducting transition temperature in the underdoped regime. The PG phase is found by the angle-resolved photoemission spectra (ARPES) to have a gap at some regions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-02, Vol.9 (1), p.1719-1719, Article 1719
Hauptverfasser: Tu, Wei-Lin, Lee, Ting-Kuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1719
container_issue 1
container_start_page 1719
container_title Scientific reports
container_volume 9
creator Tu, Wei-Lin
Lee, Ting-Kuo
description One of the most puzzling problems of high temperature cuprate superconductor is the pseudogap phase (PG) at temperatures above the superconducting transition temperature in the underdoped regime. The PG phase is found by the angle-resolved photoemission spectra (ARPES) to have a gap at some regions in momentum space and a fraction of Fermi surface remained, known as Fermi arcs. The arc turns into a d-wave SC gap with a node below the SC transition temperature. Here, by studying a strongly correlated model at low temperatures, we obtained a phase characterized by two kinds of pairing order parameters with the total momentum of the Cooper pair to be zero and finite. The finite momentum pairing is accompanied with a spatial modulation of pairing order, i.e. a pair density wave (PDW). These PDW phases are intertwined with modulations of charge density and intra-unit cell form factors. The coexistence of the two different pairing orders provides the unique two-gaps like spectra observed by ARPES for superconducting cuprates. As temperature raises, the zero-momentum pairing order vanishes while the finite momentum pairing orders are kept, thus Fermi arcs are realized. The calculated quasiparticle spectra have the similar doping and temperature dependence as reported by ARPES and scanning tunneling spectroscopy (STS). The consequence of breaking symmetry between x and y due to the unidirectional PDW and the possibility to probe such a PDW state in the PG phase is discussed.
doi_str_mv 10.1038/s41598-018-38288-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6368576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229090885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-af6474b227556f6beddde3b086c02af35d2769710795f1928641cb056f8753d83</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSNERau2f4AFisQGFgG_HxukalQo0kgdqWVtObYzkypjBzuein-PQ0ppu8AbW_Z3zr2-p6reQvAJAiw-JwKpFA2AosECCdHwV9UJAoQ2CCP0-sn5uDpP6Q6URZEkUL6pjjHgmBOOTipzeQhDnvrg69DVG93H3m_r62hdTHXrpnvnfL1JLtuw1WOtva1v8uiiCd5mM83wZqeTS7N8lceoJ_eMCDGdVUedHpI7f9hPqx9fL29XV836-tv31cW6MZSTqdEdI5y0CHFKWcdaZ611uAWCGYB0h6lFnEkOAZe0gxIJRqBpQWEFp9gKfFp9WXzH3O6dNc5PUQ9qjP1ex18q6F49f_H9Tm3DQTHMBOWsGHxcDHYvZFcXazXfgTJUgiQ4wMJ-eCgWw8_s0qT2fTJuGLR3ISeFUOEkEIIW9P0L9C7k6MsoFIKcMy4xmLtHC2ViSCm67rEDCNQcuVoiVyVy9SdyxYvo3dMvP0r-BlwAvABpnJN18V_t_9j-BuyQtwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177679308</pqid></control><display><type>article</type><title>Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Tu, Wei-Lin ; Lee, Ting-Kuo</creator><creatorcontrib>Tu, Wei-Lin ; Lee, Ting-Kuo</creatorcontrib><description>One of the most puzzling problems of high temperature cuprate superconductor is the pseudogap phase (PG) at temperatures above the superconducting transition temperature in the underdoped regime. The PG phase is found by the angle-resolved photoemission spectra (ARPES) to have a gap at some regions in momentum space and a fraction of Fermi surface remained, known as Fermi arcs. The arc turns into a d-wave SC gap with a node below the SC transition temperature. Here, by studying a strongly correlated model at low temperatures, we obtained a phase characterized by two kinds of pairing order parameters with the total momentum of the Cooper pair to be zero and finite. The finite momentum pairing is accompanied with a spatial modulation of pairing order, i.e. a pair density wave (PDW). These PDW phases are intertwined with modulations of charge density and intra-unit cell form factors. The coexistence of the two different pairing orders provides the unique two-gaps like spectra observed by ARPES for superconducting cuprates. As temperature raises, the zero-momentum pairing order vanishes while the finite momentum pairing orders are kept, thus Fermi arcs are realized. The calculated quasiparticle spectra have the similar doping and temperature dependence as reported by ARPES and scanning tunneling spectroscopy (STS). The consequence of breaking symmetry between x and y due to the unidirectional PDW and the possibility to probe such a PDW state in the PG phase is discussed.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-38288-7</identifier><identifier>PMID: 30737472</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/766/119/1003 ; Condensed Matter ; High temperature ; Humanities and Social Sciences ; Low temperature ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary) ; Spectroscopy ; Spectrum analysis ; Strongly Correlated Electrons ; Temperature ; Temperature effects</subject><ispartof>Scientific reports, 2019-02, Vol.9 (1), p.1719-1719, Article 1719</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-af6474b227556f6beddde3b086c02af35d2769710795f1928641cb056f8753d83</citedby><cites>FETCH-LOGICAL-c574t-af6474b227556f6beddde3b086c02af35d2769710795f1928641cb056f8753d83</cites><orcidid>0000-0002-3340-4963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368576/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368576/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30737472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02044290$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Wei-Lin</creatorcontrib><creatorcontrib>Lee, Ting-Kuo</creatorcontrib><title>Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>One of the most puzzling problems of high temperature cuprate superconductor is the pseudogap phase (PG) at temperatures above the superconducting transition temperature in the underdoped regime. The PG phase is found by the angle-resolved photoemission spectra (ARPES) to have a gap at some regions in momentum space and a fraction of Fermi surface remained, known as Fermi arcs. The arc turns into a d-wave SC gap with a node below the SC transition temperature. Here, by studying a strongly correlated model at low temperatures, we obtained a phase characterized by two kinds of pairing order parameters with the total momentum of the Cooper pair to be zero and finite. The finite momentum pairing is accompanied with a spatial modulation of pairing order, i.e. a pair density wave (PDW). These PDW phases are intertwined with modulations of charge density and intra-unit cell form factors. The coexistence of the two different pairing orders provides the unique two-gaps like spectra observed by ARPES for superconducting cuprates. As temperature raises, the zero-momentum pairing order vanishes while the finite momentum pairing orders are kept, thus Fermi arcs are realized. The calculated quasiparticle spectra have the similar doping and temperature dependence as reported by ARPES and scanning tunneling spectroscopy (STS). The consequence of breaking symmetry between x and y due to the unidirectional PDW and the possibility to probe such a PDW state in the PG phase is discussed.</description><subject>639/301</subject><subject>639/766/119/1003</subject><subject>Condensed Matter</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Low temperature</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Strongly Correlated Electrons</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1DAUhSNERau2f4AFisQGFgG_HxukalQo0kgdqWVtObYzkypjBzuein-PQ0ppu8AbW_Z3zr2-p6reQvAJAiw-JwKpFA2AosECCdHwV9UJAoQ2CCP0-sn5uDpP6Q6URZEkUL6pjjHgmBOOTipzeQhDnvrg69DVG93H3m_r62hdTHXrpnvnfL1JLtuw1WOtva1v8uiiCd5mM83wZqeTS7N8lceoJ_eMCDGdVUedHpI7f9hPqx9fL29XV836-tv31cW6MZSTqdEdI5y0CHFKWcdaZ611uAWCGYB0h6lFnEkOAZe0gxIJRqBpQWEFp9gKfFp9WXzH3O6dNc5PUQ9qjP1ex18q6F49f_H9Tm3DQTHMBOWsGHxcDHYvZFcXazXfgTJUgiQ4wMJ-eCgWw8_s0qT2fTJuGLR3ISeFUOEkEIIW9P0L9C7k6MsoFIKcMy4xmLtHC2ViSCm67rEDCNQcuVoiVyVy9SdyxYvo3dMvP0r-BlwAvABpnJN18V_t_9j-BuyQtwk</recordid><startdate>20190208</startdate><enddate>20190208</enddate><creator>Tu, Wei-Lin</creator><creator>Lee, Ting-Kuo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3340-4963</orcidid></search><sort><creationdate>20190208</creationdate><title>Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors</title><author>Tu, Wei-Lin ; Lee, Ting-Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-af6474b227556f6beddde3b086c02af35d2769710795f1928641cb056f8753d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301</topic><topic>639/766/119/1003</topic><topic>Condensed Matter</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Low temperature</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Strongly Correlated Electrons</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Wei-Lin</creatorcontrib><creatorcontrib>Lee, Ting-Kuo</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Wei-Lin</au><au>Lee, Ting-Kuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-02-08</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>1719</spage><epage>1719</epage><pages>1719-1719</pages><artnum>1719</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>One of the most puzzling problems of high temperature cuprate superconductor is the pseudogap phase (PG) at temperatures above the superconducting transition temperature in the underdoped regime. The PG phase is found by the angle-resolved photoemission spectra (ARPES) to have a gap at some regions in momentum space and a fraction of Fermi surface remained, known as Fermi arcs. The arc turns into a d-wave SC gap with a node below the SC transition temperature. Here, by studying a strongly correlated model at low temperatures, we obtained a phase characterized by two kinds of pairing order parameters with the total momentum of the Cooper pair to be zero and finite. The finite momentum pairing is accompanied with a spatial modulation of pairing order, i.e. a pair density wave (PDW). These PDW phases are intertwined with modulations of charge density and intra-unit cell form factors. The coexistence of the two different pairing orders provides the unique two-gaps like spectra observed by ARPES for superconducting cuprates. As temperature raises, the zero-momentum pairing order vanishes while the finite momentum pairing orders are kept, thus Fermi arcs are realized. The calculated quasiparticle spectra have the similar doping and temperature dependence as reported by ARPES and scanning tunneling spectroscopy (STS). The consequence of breaking symmetry between x and y due to the unidirectional PDW and the possibility to probe such a PDW state in the PG phase is discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30737472</pmid><doi>10.1038/s41598-018-38288-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3340-4963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-02, Vol.9 (1), p.1719-1719, Article 1719
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6368576
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 639/301
639/766/119/1003
Condensed Matter
High temperature
Humanities and Social Sciences
Low temperature
multidisciplinary
Physics
Science
Science (multidisciplinary)
Spectroscopy
Spectrum analysis
Strongly Correlated Electrons
Temperature
Temperature effects
title Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Pairing%20Orders%20between%20Pseudogap%20and%20Superconducting%20Phases%20of%20Cuprate%20Superconductors&rft.jtitle=Scientific%20reports&rft.au=Tu,%20Wei-Lin&rft.date=2019-02-08&rft.volume=9&rft.issue=1&rft.spage=1719&rft.epage=1719&rft.pages=1719-1719&rft.artnum=1719&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-38288-7&rft_dat=%3Cproquest_pubme%3E2229090885%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177679308&rft_id=info:pmid/30737472&rfr_iscdi=true