An intrinsic S/G2 checkpoint enforced by ATR

An additional cell cycle checkpointCell division is controlled by checkpoints that regulate the temporal order of the cell cycle phases, including the G1/S, G2/M, and metaphase/anaphase transitions. Yet there are no known control mechanisms for a fourth fundamental transition—the S/G2 transition. Sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-08, Vol.361 (6404), p.806-810
Hauptverfasser: Saldivar, Joshua C, Hamperl Stephan, Bocek, Michael J, Chung, Mingyu, Bass, Thomas E, Cisneros-Soberanis Fernanda, Samejima Kumiko, Xie Linfeng, Paulson, James R, Earnshaw, William C, Cortez, David, Meyer, Tobias, Cimprich, Karlene A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 810
container_issue 6404
container_start_page 806
container_title Science (American Association for the Advancement of Science)
container_volume 361
creator Saldivar, Joshua C
Hamperl Stephan
Bocek, Michael J
Chung, Mingyu
Bass, Thomas E
Cisneros-Soberanis Fernanda
Samejima Kumiko
Xie Linfeng
Paulson, James R
Earnshaw, William C
Cortez, David
Meyer, Tobias
Cimprich, Karlene A
description An additional cell cycle checkpointCell division is controlled by checkpoints that regulate the temporal order of the cell cycle phases, including the G1/S, G2/M, and metaphase/anaphase transitions. Yet there are no known control mechanisms for a fourth fundamental transition—the S/G2 transition. Saldivar et al. report a switchlike control mechanism that regulates the S/G2 transition. The checkpoint kinase ATR senses ongoing DNA replication in S phase and represses the mitotic transcriptional network, ensuring that DNA replication in S phase is completed before mitosis.Science, this issue p. 806The cell cycle is strictly ordered to ensure faithful genome duplication and chromosome segregation. Control mechanisms establish this order by dictating when a cell transitions from one phase to the next. Much is known about the control of the G1/S, G2/M, and metaphase/anaphase transitions, but thus far, no control mechanism has been identified for the S/G2 transition. Here we show that cells transactivate the mitotic gene network as they exit the S phase through a CDK1 (cyclin-dependent kinase 1)–directed FOXM1 phosphorylation switch. During normal DNA replication, the checkpoint kinase ATR (ataxia-telangiectasia and Rad3-related) is activated by ETAA1 to block this switch until the S phase ends. ATR inhibition prematurely activates FOXM1, deregulating the S/G2 transition and leading to early mitosis, underreplicated DNA, and DNA damage. Thus, ATR couples DNA replication with mitosis and preserves genome integrity by enforcing an S/G2 checkpoint.
doi_str_mv 10.1126/science.aap9346
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6365305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092519703</sourcerecordid><originalsourceid>FETCH-LOGICAL-g223t-cb2f614884566f2c75d45a250246403829d57b03da4b6fd12bb9e2eeae6aa3be3</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4Mobk7PXgtePNgtyUvS5iKMoVMYCDrPJUlft8wunc0q7L-34i56evB-Hx_v_Qi5ZnTMGFeT6DwGh2NjdhqEOiFDRrVMNadwSoaUgkpzmskBuYhxQ2mfaTgnA6AMdJ7BkNxNQ-LDvvUhepe8TeY8cWt0H7um3yYYqqZ1WCb2kEyXr5fkrDJ1xKvjHJH3x4fl7CldvMyfZ9NFuuIc9qmzvFJM5LmQSlXcZbIU0nBJuVCCQs51KTNLoTTCqqpk3FqNHNGgMgYswojc_3p3nd1i6bA_0NTFrvVb0x6KxvjibxL8ulg1X4UCJYHKXnB7FLTNZ4dxX2x9dFjXJmDTxYJTDcD6AkSP3vxDN03Xhv69H4pLpjMK8A0DbmsB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092519703</pqid></control><display><type>article</type><title>An intrinsic S/G2 checkpoint enforced by ATR</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Saldivar, Joshua C ; Hamperl Stephan ; Bocek, Michael J ; Chung, Mingyu ; Bass, Thomas E ; Cisneros-Soberanis Fernanda ; Samejima Kumiko ; Xie Linfeng ; Paulson, James R ; Earnshaw, William C ; Cortez, David ; Meyer, Tobias ; Cimprich, Karlene A</creator><creatorcontrib>Saldivar, Joshua C ; Hamperl Stephan ; Bocek, Michael J ; Chung, Mingyu ; Bass, Thomas E ; Cisneros-Soberanis Fernanda ; Samejima Kumiko ; Xie Linfeng ; Paulson, James R ; Earnshaw, William C ; Cortez, David ; Meyer, Tobias ; Cimprich, Karlene A</creatorcontrib><description>An additional cell cycle checkpointCell division is controlled by checkpoints that regulate the temporal order of the cell cycle phases, including the G1/S, G2/M, and metaphase/anaphase transitions. Yet there are no known control mechanisms for a fourth fundamental transition—the S/G2 transition. Saldivar et al. report a switchlike control mechanism that regulates the S/G2 transition. The checkpoint kinase ATR senses ongoing DNA replication in S phase and represses the mitotic transcriptional network, ensuring that DNA replication in S phase is completed before mitosis.Science, this issue p. 806The cell cycle is strictly ordered to ensure faithful genome duplication and chromosome segregation. Control mechanisms establish this order by dictating when a cell transitions from one phase to the next. Much is known about the control of the G1/S, G2/M, and metaphase/anaphase transitions, but thus far, no control mechanism has been identified for the S/G2 transition. Here we show that cells transactivate the mitotic gene network as they exit the S phase through a CDK1 (cyclin-dependent kinase 1)–directed FOXM1 phosphorylation switch. During normal DNA replication, the checkpoint kinase ATR (ataxia-telangiectasia and Rad3-related) is activated by ETAA1 to block this switch until the S phase ends. ATR inhibition prematurely activates FOXM1, deregulating the S/G2 transition and leading to early mitosis, underreplicated DNA, and DNA damage. Thus, ATR couples DNA replication with mitosis and preserves genome integrity by enforcing an S/G2 checkpoint.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aap9346</identifier><identifier>PMID: 30139873</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Anaphase ; Ataxia ; Ataxia telangiectasia ; Cell cycle ; Cell division ; Cyclin-dependent kinase ; Cyclin-dependent kinases ; Deoxyribonucleic acid ; Deregulation ; DNA ; DNA biosynthesis ; DNA damage ; Gene duplication ; Genomes ; Metaphase ; Mitosis ; Phase transitions ; Phosphorylation ; Replication ; S phase ; Temporal variations ; Transcription</subject><ispartof>Science (American Association for the Advancement of Science), 2018-08, Vol.361 (6404), p.806-810</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Saldivar, Joshua C</creatorcontrib><creatorcontrib>Hamperl Stephan</creatorcontrib><creatorcontrib>Bocek, Michael J</creatorcontrib><creatorcontrib>Chung, Mingyu</creatorcontrib><creatorcontrib>Bass, Thomas E</creatorcontrib><creatorcontrib>Cisneros-Soberanis Fernanda</creatorcontrib><creatorcontrib>Samejima Kumiko</creatorcontrib><creatorcontrib>Xie Linfeng</creatorcontrib><creatorcontrib>Paulson, James R</creatorcontrib><creatorcontrib>Earnshaw, William C</creatorcontrib><creatorcontrib>Cortez, David</creatorcontrib><creatorcontrib>Meyer, Tobias</creatorcontrib><creatorcontrib>Cimprich, Karlene A</creatorcontrib><title>An intrinsic S/G2 checkpoint enforced by ATR</title><title>Science (American Association for the Advancement of Science)</title><description>An additional cell cycle checkpointCell division is controlled by checkpoints that regulate the temporal order of the cell cycle phases, including the G1/S, G2/M, and metaphase/anaphase transitions. Yet there are no known control mechanisms for a fourth fundamental transition—the S/G2 transition. Saldivar et al. report a switchlike control mechanism that regulates the S/G2 transition. The checkpoint kinase ATR senses ongoing DNA replication in S phase and represses the mitotic transcriptional network, ensuring that DNA replication in S phase is completed before mitosis.Science, this issue p. 806The cell cycle is strictly ordered to ensure faithful genome duplication and chromosome segregation. Control mechanisms establish this order by dictating when a cell transitions from one phase to the next. Much is known about the control of the G1/S, G2/M, and metaphase/anaphase transitions, but thus far, no control mechanism has been identified for the S/G2 transition. Here we show that cells transactivate the mitotic gene network as they exit the S phase through a CDK1 (cyclin-dependent kinase 1)–directed FOXM1 phosphorylation switch. During normal DNA replication, the checkpoint kinase ATR (ataxia-telangiectasia and Rad3-related) is activated by ETAA1 to block this switch until the S phase ends. ATR inhibition prematurely activates FOXM1, deregulating the S/G2 transition and leading to early mitosis, underreplicated DNA, and DNA damage. Thus, ATR couples DNA replication with mitosis and preserves genome integrity by enforcing an S/G2 checkpoint.</description><subject>Anaphase</subject><subject>Ataxia</subject><subject>Ataxia telangiectasia</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cyclin-dependent kinase</subject><subject>Cyclin-dependent kinases</subject><subject>Deoxyribonucleic acid</subject><subject>Deregulation</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>Gene duplication</subject><subject>Genomes</subject><subject>Metaphase</subject><subject>Mitosis</subject><subject>Phase transitions</subject><subject>Phosphorylation</subject><subject>Replication</subject><subject>S phase</subject><subject>Temporal variations</subject><subject>Transcription</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAUh4Mobk7PXgtePNgtyUvS5iKMoVMYCDrPJUlft8wunc0q7L-34i56evB-Hx_v_Qi5ZnTMGFeT6DwGh2NjdhqEOiFDRrVMNadwSoaUgkpzmskBuYhxQ2mfaTgnA6AMdJ7BkNxNQ-LDvvUhepe8TeY8cWt0H7um3yYYqqZ1WCb2kEyXr5fkrDJ1xKvjHJH3x4fl7CldvMyfZ9NFuuIc9qmzvFJM5LmQSlXcZbIU0nBJuVCCQs51KTNLoTTCqqpk3FqNHNGgMgYswojc_3p3nd1i6bA_0NTFrvVb0x6KxvjibxL8ulg1X4UCJYHKXnB7FLTNZ4dxX2x9dFjXJmDTxYJTDcD6AkSP3vxDN03Xhv69H4pLpjMK8A0DbmsB</recordid><startdate>20180824</startdate><enddate>20180824</enddate><creator>Saldivar, Joshua C</creator><creator>Hamperl Stephan</creator><creator>Bocek, Michael J</creator><creator>Chung, Mingyu</creator><creator>Bass, Thomas E</creator><creator>Cisneros-Soberanis Fernanda</creator><creator>Samejima Kumiko</creator><creator>Xie Linfeng</creator><creator>Paulson, James R</creator><creator>Earnshaw, William C</creator><creator>Cortez, David</creator><creator>Meyer, Tobias</creator><creator>Cimprich, Karlene A</creator><general>The American Association for the Advancement of Science</general><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180824</creationdate><title>An intrinsic S/G2 checkpoint enforced by ATR</title><author>Saldivar, Joshua C ; Hamperl Stephan ; Bocek, Michael J ; Chung, Mingyu ; Bass, Thomas E ; Cisneros-Soberanis Fernanda ; Samejima Kumiko ; Xie Linfeng ; Paulson, James R ; Earnshaw, William C ; Cortez, David ; Meyer, Tobias ; Cimprich, Karlene A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g223t-cb2f614884566f2c75d45a250246403829d57b03da4b6fd12bb9e2eeae6aa3be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anaphase</topic><topic>Ataxia</topic><topic>Ataxia telangiectasia</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cyclin-dependent kinase</topic><topic>Cyclin-dependent kinases</topic><topic>Deoxyribonucleic acid</topic><topic>Deregulation</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>Gene duplication</topic><topic>Genomes</topic><topic>Metaphase</topic><topic>Mitosis</topic><topic>Phase transitions</topic><topic>Phosphorylation</topic><topic>Replication</topic><topic>S phase</topic><topic>Temporal variations</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saldivar, Joshua C</creatorcontrib><creatorcontrib>Hamperl Stephan</creatorcontrib><creatorcontrib>Bocek, Michael J</creatorcontrib><creatorcontrib>Chung, Mingyu</creatorcontrib><creatorcontrib>Bass, Thomas E</creatorcontrib><creatorcontrib>Cisneros-Soberanis Fernanda</creatorcontrib><creatorcontrib>Samejima Kumiko</creatorcontrib><creatorcontrib>Xie Linfeng</creatorcontrib><creatorcontrib>Paulson, James R</creatorcontrib><creatorcontrib>Earnshaw, William C</creatorcontrib><creatorcontrib>Cortez, David</creatorcontrib><creatorcontrib>Meyer, Tobias</creatorcontrib><creatorcontrib>Cimprich, Karlene A</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saldivar, Joshua C</au><au>Hamperl Stephan</au><au>Bocek, Michael J</au><au>Chung, Mingyu</au><au>Bass, Thomas E</au><au>Cisneros-Soberanis Fernanda</au><au>Samejima Kumiko</au><au>Xie Linfeng</au><au>Paulson, James R</au><au>Earnshaw, William C</au><au>Cortez, David</au><au>Meyer, Tobias</au><au>Cimprich, Karlene A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intrinsic S/G2 checkpoint enforced by ATR</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2018-08-24</date><risdate>2018</risdate><volume>361</volume><issue>6404</issue><spage>806</spage><epage>810</epage><pages>806-810</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>An additional cell cycle checkpointCell division is controlled by checkpoints that regulate the temporal order of the cell cycle phases, including the G1/S, G2/M, and metaphase/anaphase transitions. Yet there are no known control mechanisms for a fourth fundamental transition—the S/G2 transition. Saldivar et al. report a switchlike control mechanism that regulates the S/G2 transition. The checkpoint kinase ATR senses ongoing DNA replication in S phase and represses the mitotic transcriptional network, ensuring that DNA replication in S phase is completed before mitosis.Science, this issue p. 806The cell cycle is strictly ordered to ensure faithful genome duplication and chromosome segregation. Control mechanisms establish this order by dictating when a cell transitions from one phase to the next. Much is known about the control of the G1/S, G2/M, and metaphase/anaphase transitions, but thus far, no control mechanism has been identified for the S/G2 transition. Here we show that cells transactivate the mitotic gene network as they exit the S phase through a CDK1 (cyclin-dependent kinase 1)–directed FOXM1 phosphorylation switch. During normal DNA replication, the checkpoint kinase ATR (ataxia-telangiectasia and Rad3-related) is activated by ETAA1 to block this switch until the S phase ends. ATR inhibition prematurely activates FOXM1, deregulating the S/G2 transition and leading to early mitosis, underreplicated DNA, and DNA damage. Thus, ATR couples DNA replication with mitosis and preserves genome integrity by enforcing an S/G2 checkpoint.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><pmid>30139873</pmid><doi>10.1126/science.aap9346</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-08, Vol.361 (6404), p.806-810
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6365305
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Anaphase
Ataxia
Ataxia telangiectasia
Cell cycle
Cell division
Cyclin-dependent kinase
Cyclin-dependent kinases
Deoxyribonucleic acid
Deregulation
DNA
DNA biosynthesis
DNA damage
Gene duplication
Genomes
Metaphase
Mitosis
Phase transitions
Phosphorylation
Replication
S phase
Temporal variations
Transcription
title An intrinsic S/G2 checkpoint enforced by ATR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intrinsic%20S/G2%20checkpoint%20enforced%20by%20ATR&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Saldivar,%20Joshua%20C&rft.date=2018-08-24&rft.volume=361&rft.issue=6404&rft.spage=806&rft.epage=810&rft.pages=806-810&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aap9346&rft_dat=%3Cproquest_pubme%3E2092519703%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092519703&rft_id=info:pmid/30139873&rfr_iscdi=true