GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump

The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science signaling 2019-01, Vol.12 (562)
Hauptverfasser: Schneditz, Georg, Elias, Joshua E, Pagano, Ester, Zaeem Cader, M, Saveljeva, Svetlana, Long, Kathleen, Mukhopadhyay, Subhankar, Arasteh, Maryam, Lawley, Trevor D, Dougan, Gordon, Bassett, Andrew, Karlsen, Tom H, Kaser, Arthur, Kaneider, Nicole C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 562
container_start_page
container_title Science signaling
container_volume 12
creator Schneditz, Georg
Elias, Joshua E
Pagano, Ester
Zaeem Cader, M
Saveljeva, Svetlana
Long, Kathleen
Mukhopadhyay, Subhankar
Arasteh, Maryam
Lawley, Trevor D
Dougan, Gordon
Bassett, Andrew
Karlsen, Tom H
Kaser, Arthur
Kaneider, Nicole C
description The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.
doi_str_mv 10.1126/scisignal.aau9048
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6364804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2163233693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-725ea63ea9ae215963866ace5851d345d521ed67303c353d10ebf7754e8173243</originalsourceid><addsrcrecordid>eNpVUctqHDEQFCEhfiQf4IstyNXjSGo9Zi6BYPwCg01IzkKr0c7KzEhjSZOwf-8d73pxTl10V1U3XQidUHJBKZPfs_XZd8H0F8ZMDeH1B3RIG1BVQ7n4OGMuKlIrdYCOcn4iRFLGms_oAIgkhEl2iPqbx18g8JjiEIvLuOvXNvbr7PP53Oz90iVTfAzn2IQWx2Bj54K3eLvYhw4v1tiFznQz_ufLCpeVwzm2fhrwGIvJ-RVNw_gFfVqaPruvu3qM_lxf_b68re4fbu4uf95XlgtaKsWEMxKcaYxjVDQSaimNdaIWtAUuWsGoa6UCAhYEtJS4xVIpwV1NFTAOx-jH1necFoNrrQslmV6PyQ8mrXU0Xv8_CX6lu_hXS5C8JrPB2dbAJp-LDzrEZDQltWBacUXIhvFttyLF58nlop_ilDYfyZpRCQxANrBh0TefmHNyy_0NlOg5Qr2PUO8i3GhO3x-_V7xlBi8TyZtB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163233693</pqid></control><display><type>article</type><title>GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><creator>Schneditz, Georg ; Elias, Joshua E ; Pagano, Ester ; Zaeem Cader, M ; Saveljeva, Svetlana ; Long, Kathleen ; Mukhopadhyay, Subhankar ; Arasteh, Maryam ; Lawley, Trevor D ; Dougan, Gordon ; Bassett, Andrew ; Karlsen, Tom H ; Kaser, Arthur ; Kaneider, Nicole C</creator><creatorcontrib>Schneditz, Georg ; Elias, Joshua E ; Pagano, Ester ; Zaeem Cader, M ; Saveljeva, Svetlana ; Long, Kathleen ; Mukhopadhyay, Subhankar ; Arasteh, Maryam ; Lawley, Trevor D ; Dougan, Gordon ; Bassett, Andrew ; Karlsen, Tom H ; Kaser, Arthur ; Kaneider, Nicole C</creatorcontrib><description>The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.aau9048</identifier><identifier>PMID: 30600262</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Animal models ; Animals ; Bile ducts ; Calcium ; Calcium ions ; Cancer ; Carcinogenesis ; Cell activation ; Cell Proliferation ; Cholangitis ; Clonal deletion ; Colitis, Ulcerative - genetics ; Colitis, Ulcerative - metabolism ; Electrochemistry ; Epithelial cells ; Epithelial Cells - metabolism ; Gene deletion ; Glycolysis ; Health risks ; HEK293 Cells ; Humans ; Inflammatory bowel diseases ; Inflammatory diseases ; Intestinal Mucosa - cytology ; Intestinal Mucosa - metabolism ; Ion transport ; Large intestine ; Ligands ; Macrophages ; Macrophages - cytology ; Macrophages - metabolism ; Membrane potential ; Metabolic rate ; Metabolism ; Mice, Knockout ; Na+/K+-exchanging ATPase ; Polymorphism ; Polymorphism, Single Nucleotide ; Potassium ; Proteins ; Receptor mechanisms ; Receptors ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Risk ; Signal Transduction ; Signaling ; Sodium ; Sodium-Potassium-Exchanging ATPase - genetics ; Sodium-Potassium-Exchanging ATPase - metabolism ; Src protein ; src-Family Kinases - genetics ; src-Family Kinases - metabolism ; THP-1 Cells ; Ulcerative colitis</subject><ispartof>Science signaling, 2019-01, Vol.12 (562)</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-725ea63ea9ae215963866ace5851d345d521ed67303c353d10ebf7754e8173243</citedby><cites>FETCH-LOGICAL-c451t-725ea63ea9ae215963866ace5851d345d521ed67303c353d10ebf7754e8173243</cites><orcidid>0000-0001-6734-5861 ; 0000-0002-6079-4389 ; 0000-0002-4121-748X ; 0000-0002-0644-9752 ; 0000-0003-2137-117X ; 0000-0003-1419-3344 ; 0000-0003-1632-9137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,4010,26544,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30600262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneditz, Georg</creatorcontrib><creatorcontrib>Elias, Joshua E</creatorcontrib><creatorcontrib>Pagano, Ester</creatorcontrib><creatorcontrib>Zaeem Cader, M</creatorcontrib><creatorcontrib>Saveljeva, Svetlana</creatorcontrib><creatorcontrib>Long, Kathleen</creatorcontrib><creatorcontrib>Mukhopadhyay, Subhankar</creatorcontrib><creatorcontrib>Arasteh, Maryam</creatorcontrib><creatorcontrib>Lawley, Trevor D</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Bassett, Andrew</creatorcontrib><creatorcontrib>Karlsen, Tom H</creatorcontrib><creatorcontrib>Kaser, Arthur</creatorcontrib><creatorcontrib>Kaneider, Nicole C</creatorcontrib><title>GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.</description><subject>Animal models</subject><subject>Animals</subject><subject>Bile ducts</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Cell activation</subject><subject>Cell Proliferation</subject><subject>Cholangitis</subject><subject>Clonal deletion</subject><subject>Colitis, Ulcerative - genetics</subject><subject>Colitis, Ulcerative - metabolism</subject><subject>Electrochemistry</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene deletion</subject><subject>Glycolysis</subject><subject>Health risks</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory diseases</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Ion transport</subject><subject>Large intestine</subject><subject>Ligands</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - metabolism</subject><subject>Membrane potential</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Mice, Knockout</subject><subject>Na+/K+-exchanging ATPase</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Potassium</subject><subject>Proteins</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Risk</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Sodium</subject><subject>Sodium-Potassium-Exchanging ATPase - genetics</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Src protein</subject><subject>src-Family Kinases - genetics</subject><subject>src-Family Kinases - metabolism</subject><subject>THP-1 Cells</subject><subject>Ulcerative colitis</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNpVUctqHDEQFCEhfiQf4IstyNXjSGo9Zi6BYPwCg01IzkKr0c7KzEhjSZOwf-8d73pxTl10V1U3XQidUHJBKZPfs_XZd8H0F8ZMDeH1B3RIG1BVQ7n4OGMuKlIrdYCOcn4iRFLGms_oAIgkhEl2iPqbx18g8JjiEIvLuOvXNvbr7PP53Oz90iVTfAzn2IQWx2Bj54K3eLvYhw4v1tiFznQz_ufLCpeVwzm2fhrwGIvJ-RVNw_gFfVqaPruvu3qM_lxf_b68re4fbu4uf95XlgtaKsWEMxKcaYxjVDQSaimNdaIWtAUuWsGoa6UCAhYEtJS4xVIpwV1NFTAOx-jH1necFoNrrQslmV6PyQ8mrXU0Xv8_CX6lu_hXS5C8JrPB2dbAJp-LDzrEZDQltWBacUXIhvFttyLF58nlop_ilDYfyZpRCQxANrBh0TefmHNyy_0NlOg5Qr2PUO8i3GhO3x-_V7xlBi8TyZtB</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Schneditz, Georg</creator><creator>Elias, Joshua E</creator><creator>Pagano, Ester</creator><creator>Zaeem Cader, M</creator><creator>Saveljeva, Svetlana</creator><creator>Long, Kathleen</creator><creator>Mukhopadhyay, Subhankar</creator><creator>Arasteh, Maryam</creator><creator>Lawley, Trevor D</creator><creator>Dougan, Gordon</creator><creator>Bassett, Andrew</creator><creator>Karlsen, Tom H</creator><creator>Kaser, Arthur</creator><creator>Kaneider, Nicole C</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Scienc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6734-5861</orcidid><orcidid>https://orcid.org/0000-0002-6079-4389</orcidid><orcidid>https://orcid.org/0000-0002-4121-748X</orcidid><orcidid>https://orcid.org/0000-0002-0644-9752</orcidid><orcidid>https://orcid.org/0000-0003-2137-117X</orcidid><orcidid>https://orcid.org/0000-0003-1419-3344</orcidid><orcidid>https://orcid.org/0000-0003-1632-9137</orcidid></search><sort><creationdate>20190101</creationdate><title>GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump</title><author>Schneditz, Georg ; Elias, Joshua E ; Pagano, Ester ; Zaeem Cader, M ; Saveljeva, Svetlana ; Long, Kathleen ; Mukhopadhyay, Subhankar ; Arasteh, Maryam ; Lawley, Trevor D ; Dougan, Gordon ; Bassett, Andrew ; Karlsen, Tom H ; Kaser, Arthur ; Kaneider, Nicole C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-725ea63ea9ae215963866ace5851d345d521ed67303c353d10ebf7754e8173243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Bile ducts</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Cell activation</topic><topic>Cell Proliferation</topic><topic>Cholangitis</topic><topic>Clonal deletion</topic><topic>Colitis, Ulcerative - genetics</topic><topic>Colitis, Ulcerative - metabolism</topic><topic>Electrochemistry</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene deletion</topic><topic>Glycolysis</topic><topic>Health risks</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory diseases</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Ion transport</topic><topic>Large intestine</topic><topic>Ligands</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - metabolism</topic><topic>Membrane potential</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Mice, Knockout</topic><topic>Na+/K+-exchanging ATPase</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Potassium</topic><topic>Proteins</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Risk</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Sodium</topic><topic>Sodium-Potassium-Exchanging ATPase - genetics</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Src protein</topic><topic>src-Family Kinases - genetics</topic><topic>src-Family Kinases - metabolism</topic><topic>THP-1 Cells</topic><topic>Ulcerative colitis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneditz, Georg</creatorcontrib><creatorcontrib>Elias, Joshua E</creatorcontrib><creatorcontrib>Pagano, Ester</creatorcontrib><creatorcontrib>Zaeem Cader, M</creatorcontrib><creatorcontrib>Saveljeva, Svetlana</creatorcontrib><creatorcontrib>Long, Kathleen</creatorcontrib><creatorcontrib>Mukhopadhyay, Subhankar</creatorcontrib><creatorcontrib>Arasteh, Maryam</creatorcontrib><creatorcontrib>Lawley, Trevor D</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Bassett, Andrew</creatorcontrib><creatorcontrib>Karlsen, Tom H</creatorcontrib><creatorcontrib>Kaser, Arthur</creatorcontrib><creatorcontrib>Kaneider, Nicole C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneditz, Georg</au><au>Elias, Joshua E</au><au>Pagano, Ester</au><au>Zaeem Cader, M</au><au>Saveljeva, Svetlana</au><au>Long, Kathleen</au><au>Mukhopadhyay, Subhankar</au><au>Arasteh, Maryam</au><au>Lawley, Trevor D</au><au>Dougan, Gordon</au><au>Bassett, Andrew</au><au>Karlsen, Tom H</au><au>Kaser, Arthur</au><au>Kaneider, Nicole C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>562</issue><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30600262</pmid><doi>10.1126/scisignal.aau9048</doi><orcidid>https://orcid.org/0000-0001-6734-5861</orcidid><orcidid>https://orcid.org/0000-0002-6079-4389</orcidid><orcidid>https://orcid.org/0000-0002-4121-748X</orcidid><orcidid>https://orcid.org/0000-0002-0644-9752</orcidid><orcidid>https://orcid.org/0000-0003-2137-117X</orcidid><orcidid>https://orcid.org/0000-0003-1419-3344</orcidid><orcidid>https://orcid.org/0000-0003-1632-9137</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1945-0877
ispartof Science signaling, 2019-01, Vol.12 (562)
issn 1945-0877
1937-9145
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6364804
source American Association for the Advancement of Science; MEDLINE; NORA - Norwegian Open Research Archives
subjects Animal models
Animals
Bile ducts
Calcium
Calcium ions
Cancer
Carcinogenesis
Cell activation
Cell Proliferation
Cholangitis
Clonal deletion
Colitis, Ulcerative - genetics
Colitis, Ulcerative - metabolism
Electrochemistry
Epithelial cells
Epithelial Cells - metabolism
Gene deletion
Glycolysis
Health risks
HEK293 Cells
Humans
Inflammatory bowel diseases
Inflammatory diseases
Intestinal Mucosa - cytology
Intestinal Mucosa - metabolism
Ion transport
Large intestine
Ligands
Macrophages
Macrophages - cytology
Macrophages - metabolism
Membrane potential
Metabolic rate
Metabolism
Mice, Knockout
Na+/K+-exchanging ATPase
Polymorphism
Polymorphism, Single Nucleotide
Potassium
Proteins
Receptor mechanisms
Receptors
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
Risk
Signal Transduction
Signaling
Sodium
Sodium-Potassium-Exchanging ATPase - genetics
Sodium-Potassium-Exchanging ATPase - metabolism
Src protein
src-Family Kinases - genetics
src-Family Kinases - metabolism
THP-1 Cells
Ulcerative colitis
title GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPR35%20promotes%20glycolysis,%20proliferation,%20and%20oncogenic%20signaling%20by%20engaging%20with%20the%20sodium%20potassium%20pump&rft.jtitle=Science%20signaling&rft.au=Schneditz,%20Georg&rft.date=2019-01-01&rft.volume=12&rft.issue=562&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.aau9048&rft_dat=%3Cproquest_pubme%3E2163233693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2163233693&rft_id=info:pmid/30600262&rfr_iscdi=true