GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump
The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport a...
Gespeichert in:
Veröffentlicht in: | Science signaling 2019-01, Vol.12 (562) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 562 |
container_start_page | |
container_title | Science signaling |
container_volume | 12 |
creator | Schneditz, Georg Elias, Joshua E Pagano, Ester Zaeem Cader, M Saveljeva, Svetlana Long, Kathleen Mukhopadhyay, Subhankar Arasteh, Maryam Lawley, Trevor D Dougan, Gordon Bassett, Andrew Karlsen, Tom H Kaser, Arthur Kaneider, Nicole C |
description | The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca
to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology. |
doi_str_mv | 10.1126/scisignal.aau9048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6364804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2163233693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-725ea63ea9ae215963866ace5851d345d521ed67303c353d10ebf7754e8173243</originalsourceid><addsrcrecordid>eNpVUctqHDEQFCEhfiQf4IstyNXjSGo9Zi6BYPwCg01IzkKr0c7KzEhjSZOwf-8d73pxTl10V1U3XQidUHJBKZPfs_XZd8H0F8ZMDeH1B3RIG1BVQ7n4OGMuKlIrdYCOcn4iRFLGms_oAIgkhEl2iPqbx18g8JjiEIvLuOvXNvbr7PP53Oz90iVTfAzn2IQWx2Bj54K3eLvYhw4v1tiFznQz_ufLCpeVwzm2fhrwGIvJ-RVNw_gFfVqaPruvu3qM_lxf_b68re4fbu4uf95XlgtaKsWEMxKcaYxjVDQSaimNdaIWtAUuWsGoa6UCAhYEtJS4xVIpwV1NFTAOx-jH1necFoNrrQslmV6PyQ8mrXU0Xv8_CX6lu_hXS5C8JrPB2dbAJp-LDzrEZDQltWBacUXIhvFttyLF58nlop_ilDYfyZpRCQxANrBh0TefmHNyy_0NlOg5Qr2PUO8i3GhO3x-_V7xlBi8TyZtB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163233693</pqid></control><display><type>article</type><title>GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><creator>Schneditz, Georg ; Elias, Joshua E ; Pagano, Ester ; Zaeem Cader, M ; Saveljeva, Svetlana ; Long, Kathleen ; Mukhopadhyay, Subhankar ; Arasteh, Maryam ; Lawley, Trevor D ; Dougan, Gordon ; Bassett, Andrew ; Karlsen, Tom H ; Kaser, Arthur ; Kaneider, Nicole C</creator><creatorcontrib>Schneditz, Georg ; Elias, Joshua E ; Pagano, Ester ; Zaeem Cader, M ; Saveljeva, Svetlana ; Long, Kathleen ; Mukhopadhyay, Subhankar ; Arasteh, Maryam ; Lawley, Trevor D ; Dougan, Gordon ; Bassett, Andrew ; Karlsen, Tom H ; Kaser, Arthur ; Kaneider, Nicole C</creatorcontrib><description>The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca
to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.aau9048</identifier><identifier>PMID: 30600262</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Animal models ; Animals ; Bile ducts ; Calcium ; Calcium ions ; Cancer ; Carcinogenesis ; Cell activation ; Cell Proliferation ; Cholangitis ; Clonal deletion ; Colitis, Ulcerative - genetics ; Colitis, Ulcerative - metabolism ; Electrochemistry ; Epithelial cells ; Epithelial Cells - metabolism ; Gene deletion ; Glycolysis ; Health risks ; HEK293 Cells ; Humans ; Inflammatory bowel diseases ; Inflammatory diseases ; Intestinal Mucosa - cytology ; Intestinal Mucosa - metabolism ; Ion transport ; Large intestine ; Ligands ; Macrophages ; Macrophages - cytology ; Macrophages - metabolism ; Membrane potential ; Metabolic rate ; Metabolism ; Mice, Knockout ; Na+/K+-exchanging ATPase ; Polymorphism ; Polymorphism, Single Nucleotide ; Potassium ; Proteins ; Receptor mechanisms ; Receptors ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Risk ; Signal Transduction ; Signaling ; Sodium ; Sodium-Potassium-Exchanging ATPase - genetics ; Sodium-Potassium-Exchanging ATPase - metabolism ; Src protein ; src-Family Kinases - genetics ; src-Family Kinases - metabolism ; THP-1 Cells ; Ulcerative colitis</subject><ispartof>Science signaling, 2019-01, Vol.12 (562)</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-725ea63ea9ae215963866ace5851d345d521ed67303c353d10ebf7754e8173243</citedby><cites>FETCH-LOGICAL-c451t-725ea63ea9ae215963866ace5851d345d521ed67303c353d10ebf7754e8173243</cites><orcidid>0000-0001-6734-5861 ; 0000-0002-6079-4389 ; 0000-0002-4121-748X ; 0000-0002-0644-9752 ; 0000-0003-2137-117X ; 0000-0003-1419-3344 ; 0000-0003-1632-9137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,4010,26544,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30600262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneditz, Georg</creatorcontrib><creatorcontrib>Elias, Joshua E</creatorcontrib><creatorcontrib>Pagano, Ester</creatorcontrib><creatorcontrib>Zaeem Cader, M</creatorcontrib><creatorcontrib>Saveljeva, Svetlana</creatorcontrib><creatorcontrib>Long, Kathleen</creatorcontrib><creatorcontrib>Mukhopadhyay, Subhankar</creatorcontrib><creatorcontrib>Arasteh, Maryam</creatorcontrib><creatorcontrib>Lawley, Trevor D</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Bassett, Andrew</creatorcontrib><creatorcontrib>Karlsen, Tom H</creatorcontrib><creatorcontrib>Kaser, Arthur</creatorcontrib><creatorcontrib>Kaneider, Nicole C</creatorcontrib><title>GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca
to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.</description><subject>Animal models</subject><subject>Animals</subject><subject>Bile ducts</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Cell activation</subject><subject>Cell Proliferation</subject><subject>Cholangitis</subject><subject>Clonal deletion</subject><subject>Colitis, Ulcerative - genetics</subject><subject>Colitis, Ulcerative - metabolism</subject><subject>Electrochemistry</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene deletion</subject><subject>Glycolysis</subject><subject>Health risks</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory diseases</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Ion transport</subject><subject>Large intestine</subject><subject>Ligands</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - metabolism</subject><subject>Membrane potential</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Mice, Knockout</subject><subject>Na+/K+-exchanging ATPase</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Potassium</subject><subject>Proteins</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Risk</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Sodium</subject><subject>Sodium-Potassium-Exchanging ATPase - genetics</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Src protein</subject><subject>src-Family Kinases - genetics</subject><subject>src-Family Kinases - metabolism</subject><subject>THP-1 Cells</subject><subject>Ulcerative colitis</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNpVUctqHDEQFCEhfiQf4IstyNXjSGo9Zi6BYPwCg01IzkKr0c7KzEhjSZOwf-8d73pxTl10V1U3XQidUHJBKZPfs_XZd8H0F8ZMDeH1B3RIG1BVQ7n4OGMuKlIrdYCOcn4iRFLGms_oAIgkhEl2iPqbx18g8JjiEIvLuOvXNvbr7PP53Oz90iVTfAzn2IQWx2Bj54K3eLvYhw4v1tiFznQz_ufLCpeVwzm2fhrwGIvJ-RVNw_gFfVqaPruvu3qM_lxf_b68re4fbu4uf95XlgtaKsWEMxKcaYxjVDQSaimNdaIWtAUuWsGoa6UCAhYEtJS4xVIpwV1NFTAOx-jH1necFoNrrQslmV6PyQ8mrXU0Xv8_CX6lu_hXS5C8JrPB2dbAJp-LDzrEZDQltWBacUXIhvFttyLF58nlop_ilDYfyZpRCQxANrBh0TefmHNyy_0NlOg5Qr2PUO8i3GhO3x-_V7xlBi8TyZtB</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Schneditz, Georg</creator><creator>Elias, Joshua E</creator><creator>Pagano, Ester</creator><creator>Zaeem Cader, M</creator><creator>Saveljeva, Svetlana</creator><creator>Long, Kathleen</creator><creator>Mukhopadhyay, Subhankar</creator><creator>Arasteh, Maryam</creator><creator>Lawley, Trevor D</creator><creator>Dougan, Gordon</creator><creator>Bassett, Andrew</creator><creator>Karlsen, Tom H</creator><creator>Kaser, Arthur</creator><creator>Kaneider, Nicole C</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Scienc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6734-5861</orcidid><orcidid>https://orcid.org/0000-0002-6079-4389</orcidid><orcidid>https://orcid.org/0000-0002-4121-748X</orcidid><orcidid>https://orcid.org/0000-0002-0644-9752</orcidid><orcidid>https://orcid.org/0000-0003-2137-117X</orcidid><orcidid>https://orcid.org/0000-0003-1419-3344</orcidid><orcidid>https://orcid.org/0000-0003-1632-9137</orcidid></search><sort><creationdate>20190101</creationdate><title>GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump</title><author>Schneditz, Georg ; Elias, Joshua E ; Pagano, Ester ; Zaeem Cader, M ; Saveljeva, Svetlana ; Long, Kathleen ; Mukhopadhyay, Subhankar ; Arasteh, Maryam ; Lawley, Trevor D ; Dougan, Gordon ; Bassett, Andrew ; Karlsen, Tom H ; Kaser, Arthur ; Kaneider, Nicole C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-725ea63ea9ae215963866ace5851d345d521ed67303c353d10ebf7754e8173243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Bile ducts</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Cell activation</topic><topic>Cell Proliferation</topic><topic>Cholangitis</topic><topic>Clonal deletion</topic><topic>Colitis, Ulcerative - genetics</topic><topic>Colitis, Ulcerative - metabolism</topic><topic>Electrochemistry</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene deletion</topic><topic>Glycolysis</topic><topic>Health risks</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory diseases</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Ion transport</topic><topic>Large intestine</topic><topic>Ligands</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - metabolism</topic><topic>Membrane potential</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Mice, Knockout</topic><topic>Na+/K+-exchanging ATPase</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Potassium</topic><topic>Proteins</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Risk</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Sodium</topic><topic>Sodium-Potassium-Exchanging ATPase - genetics</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Src protein</topic><topic>src-Family Kinases - genetics</topic><topic>src-Family Kinases - metabolism</topic><topic>THP-1 Cells</topic><topic>Ulcerative colitis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneditz, Georg</creatorcontrib><creatorcontrib>Elias, Joshua E</creatorcontrib><creatorcontrib>Pagano, Ester</creatorcontrib><creatorcontrib>Zaeem Cader, M</creatorcontrib><creatorcontrib>Saveljeva, Svetlana</creatorcontrib><creatorcontrib>Long, Kathleen</creatorcontrib><creatorcontrib>Mukhopadhyay, Subhankar</creatorcontrib><creatorcontrib>Arasteh, Maryam</creatorcontrib><creatorcontrib>Lawley, Trevor D</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Bassett, Andrew</creatorcontrib><creatorcontrib>Karlsen, Tom H</creatorcontrib><creatorcontrib>Kaser, Arthur</creatorcontrib><creatorcontrib>Kaneider, Nicole C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneditz, Georg</au><au>Elias, Joshua E</au><au>Pagano, Ester</au><au>Zaeem Cader, M</au><au>Saveljeva, Svetlana</au><au>Long, Kathleen</au><au>Mukhopadhyay, Subhankar</au><au>Arasteh, Maryam</au><au>Lawley, Trevor D</au><au>Dougan, Gordon</au><au>Bassett, Andrew</au><au>Karlsen, Tom H</au><au>Kaser, Arthur</au><au>Kaneider, Nicole C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>562</issue><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca
to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30600262</pmid><doi>10.1126/scisignal.aau9048</doi><orcidid>https://orcid.org/0000-0001-6734-5861</orcidid><orcidid>https://orcid.org/0000-0002-6079-4389</orcidid><orcidid>https://orcid.org/0000-0002-4121-748X</orcidid><orcidid>https://orcid.org/0000-0002-0644-9752</orcidid><orcidid>https://orcid.org/0000-0003-2137-117X</orcidid><orcidid>https://orcid.org/0000-0003-1419-3344</orcidid><orcidid>https://orcid.org/0000-0003-1632-9137</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1945-0877 |
ispartof | Science signaling, 2019-01, Vol.12 (562) |
issn | 1945-0877 1937-9145 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6364804 |
source | American Association for the Advancement of Science; MEDLINE; NORA - Norwegian Open Research Archives |
subjects | Animal models Animals Bile ducts Calcium Calcium ions Cancer Carcinogenesis Cell activation Cell Proliferation Cholangitis Clonal deletion Colitis, Ulcerative - genetics Colitis, Ulcerative - metabolism Electrochemistry Epithelial cells Epithelial Cells - metabolism Gene deletion Glycolysis Health risks HEK293 Cells Humans Inflammatory bowel diseases Inflammatory diseases Intestinal Mucosa - cytology Intestinal Mucosa - metabolism Ion transport Large intestine Ligands Macrophages Macrophages - cytology Macrophages - metabolism Membrane potential Metabolic rate Metabolism Mice, Knockout Na+/K+-exchanging ATPase Polymorphism Polymorphism, Single Nucleotide Potassium Proteins Receptor mechanisms Receptors Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism Risk Signal Transduction Signaling Sodium Sodium-Potassium-Exchanging ATPase - genetics Sodium-Potassium-Exchanging ATPase - metabolism Src protein src-Family Kinases - genetics src-Family Kinases - metabolism THP-1 Cells Ulcerative colitis |
title | GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPR35%20promotes%20glycolysis,%20proliferation,%20and%20oncogenic%20signaling%20by%20engaging%20with%20the%20sodium%20potassium%20pump&rft.jtitle=Science%20signaling&rft.au=Schneditz,%20Georg&rft.date=2019-01-01&rft.volume=12&rft.issue=562&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.aau9048&rft_dat=%3Cproquest_pubme%3E2163233693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2163233693&rft_id=info:pmid/30600262&rfr_iscdi=true |