Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models

Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2017-04, Vol.121 (15), p.3787-3797
Hauptverfasser: Hitchcock, Andrew, Hunter, C. Neil, Sener, Melih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3797
container_issue 15
container_start_page 3787
container_title The journal of physical chemistry. B
container_volume 121
creator Hitchcock, Andrew
Hunter, C. Neil
Sener, Melih
description Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5–2.6 h for a typical illumination range of 10–100 μmol photons m–2 s–1, respectively, with corresponding cell doubling times of 8.2–3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2–8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3–4 orders of magnitude shorter for the chromatophore than for synthetic systems.
doi_str_mv 10.1021/acs.jpcb.6b12335
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6362981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1878824736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a530t-991b6749b23503ecec2322bbbb6db3fe7329d627383de310f093f202f85d463</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSNERR-wZ4UsVizI1I_EcTZIZcqjUhGIVmwtx7npuErswXYq9Tf0T3OnM1RlUWHJsiV_51z7-hTFa0YXjHJ2bGxaXK9tt5Ad40LUz4oDVnNa4mye7_aSUblfHKZ0TSmvuZIvin2uBGVM8oPi7hQyxMl5k13wJAxkCeNITsPcjc5fkUs3QSJDDBPJKyA_Ic_Rl8GXZ_4GUp7A53tmo_yxCjmkW49gdpb8guTsiOqPJkFP0P0khwkPsKRxI7nIcbZoZ0byLfQwppfF3mDGBK9261Fx8fnT5fJref79y9ny5Lw0taC5bFvWyaZqOy5qKsCC5YLzDofsOzFAI3jbS94IJXoQjA60FQOnfFB1X0lxVHzYuq7nboLe4gvwCnod3WTirQ7G6X9PvFvpq3CjpZC8VQwN3m4NQspOJ-sy2JUN3oPNmgmlatog9G5XJYbfM3ZKTy5ZbK3xEOakOaW0qirZyv-iTDVK8aoRG5RuURtDShGGh2szqjeJ0JgIvUmE3iUCJW8eP_dB8DcCCLzfAvfSgN-LvX_a7w-OmcQN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878824736</pqid></control><display><type>article</type><title>Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models</title><source>ACS Publications</source><source>MEDLINE</source><creator>Hitchcock, Andrew ; Hunter, C. Neil ; Sener, Melih</creator><creatorcontrib>Hitchcock, Andrew ; Hunter, C. Neil ; Sener, Melih ; Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</creatorcontrib><description>Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5–2.6 h for a typical illumination range of 10–100 μmol photons m–2 s–1, respectively, with corresponding cell doubling times of 8.2–3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2–8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3–4 orders of magnitude shorter for the chromatophore than for synthetic systems.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.6b12335</identifier><identifier>PMID: 28301162</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>09 BIOMASS FUELS ; absorbance ; adenosine triphosphate ; Adenosine Triphosphate - biosynthesis ; Bacterial Chromatophores - chemistry ; Bacterial Chromatophores - metabolism ; BASIC BIOLOGICAL SCIENCES ; bio-inspired ; biofuels (including algae and biomass) ; charge transport ; chromatophores ; energy conversion ; energy expenditure ; fossil fuels ; Light-Harvesting Protein Complexes - chemistry ; Light-Harvesting Protein Complexes - metabolism ; lighting ; membrane ; Molecular Dynamics Simulation ; photons ; photosynthesis ; photosynthesis (natural and artificial) ; physical chemistry ; Protein Conformation ; Rhodobacter sphaeroides ; Rhodobacter sphaeroides - chemistry ; Rhodobacter sphaeroides - cytology ; Rhodobacter sphaeroides - metabolism ; solar (fuels) ; synthesis (novel materials) ; synthesis (self-assembly) ; Time Factors</subject><ispartof>The journal of physical chemistry. B, 2017-04, Vol.121 (15), p.3787-3797</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a530t-991b6749b23503ecec2322bbbb6db3fe7329d627383de310f093f202f85d463</citedby><cites>FETCH-LOGICAL-a530t-991b6749b23503ecec2322bbbb6db3fe7329d627383de310f093f202f85d463</cites><orcidid>0000-0002-6773-6333 ; 0000-0003-2533-9783 ; 0000000267736333 ; 0000000325339783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.6b12335$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.6b12335$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28301162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1388507$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hitchcock, Andrew</creatorcontrib><creatorcontrib>Hunter, C. Neil</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</creatorcontrib><title>Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5–2.6 h for a typical illumination range of 10–100 μmol photons m–2 s–1, respectively, with corresponding cell doubling times of 8.2–3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2–8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3–4 orders of magnitude shorter for the chromatophore than for synthetic systems.</description><subject>09 BIOMASS FUELS</subject><subject>absorbance</subject><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Bacterial Chromatophores - chemistry</subject><subject>Bacterial Chromatophores - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>bio-inspired</subject><subject>biofuels (including algae and biomass)</subject><subject>charge transport</subject><subject>chromatophores</subject><subject>energy conversion</subject><subject>energy expenditure</subject><subject>fossil fuels</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>lighting</subject><subject>membrane</subject><subject>Molecular Dynamics Simulation</subject><subject>photons</subject><subject>photosynthesis</subject><subject>photosynthesis (natural and artificial)</subject><subject>physical chemistry</subject><subject>Protein Conformation</subject><subject>Rhodobacter sphaeroides</subject><subject>Rhodobacter sphaeroides - chemistry</subject><subject>Rhodobacter sphaeroides - cytology</subject><subject>Rhodobacter sphaeroides - metabolism</subject><subject>solar (fuels)</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><subject>Time Factors</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAUhSNERR-wZ4UsVizI1I_EcTZIZcqjUhGIVmwtx7npuErswXYq9Tf0T3OnM1RlUWHJsiV_51z7-hTFa0YXjHJ2bGxaXK9tt5Ad40LUz4oDVnNa4mye7_aSUblfHKZ0TSmvuZIvin2uBGVM8oPi7hQyxMl5k13wJAxkCeNITsPcjc5fkUs3QSJDDBPJKyA_Ic_Rl8GXZ_4GUp7A53tmo_yxCjmkW49gdpb8guTsiOqPJkFP0P0khwkPsKRxI7nIcbZoZ0byLfQwppfF3mDGBK9261Fx8fnT5fJref79y9ny5Lw0taC5bFvWyaZqOy5qKsCC5YLzDofsOzFAI3jbS94IJXoQjA60FQOnfFB1X0lxVHzYuq7nboLe4gvwCnod3WTirQ7G6X9PvFvpq3CjpZC8VQwN3m4NQspOJ-sy2JUN3oPNmgmlatog9G5XJYbfM3ZKTy5ZbK3xEOakOaW0qirZyv-iTDVK8aoRG5RuURtDShGGh2szqjeJ0JgIvUmE3iUCJW8eP_dB8DcCCLzfAvfSgN-LvX_a7w-OmcQN</recordid><startdate>20170420</startdate><enddate>20170420</enddate><creator>Hitchcock, Andrew</creator><creator>Hunter, C. Neil</creator><creator>Sener, Melih</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6773-6333</orcidid><orcidid>https://orcid.org/0000-0003-2533-9783</orcidid><orcidid>https://orcid.org/0000000267736333</orcidid><orcidid>https://orcid.org/0000000325339783</orcidid></search><sort><creationdate>20170420</creationdate><title>Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models</title><author>Hitchcock, Andrew ; Hunter, C. Neil ; Sener, Melih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a530t-991b6749b23503ecec2322bbbb6db3fe7329d627383de310f093f202f85d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>09 BIOMASS FUELS</topic><topic>absorbance</topic><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Bacterial Chromatophores - chemistry</topic><topic>Bacterial Chromatophores - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>bio-inspired</topic><topic>biofuels (including algae and biomass)</topic><topic>charge transport</topic><topic>chromatophores</topic><topic>energy conversion</topic><topic>energy expenditure</topic><topic>fossil fuels</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>lighting</topic><topic>membrane</topic><topic>Molecular Dynamics Simulation</topic><topic>photons</topic><topic>photosynthesis</topic><topic>photosynthesis (natural and artificial)</topic><topic>physical chemistry</topic><topic>Protein Conformation</topic><topic>Rhodobacter sphaeroides</topic><topic>Rhodobacter sphaeroides - chemistry</topic><topic>Rhodobacter sphaeroides - cytology</topic><topic>Rhodobacter sphaeroides - metabolism</topic><topic>solar (fuels)</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hitchcock, Andrew</creatorcontrib><creatorcontrib>Hunter, C. Neil</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hitchcock, Andrew</au><au>Hunter, C. Neil</au><au>Sener, Melih</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2017-04-20</date><risdate>2017</risdate><volume>121</volume><issue>15</issue><spage>3787</spage><epage>3797</epage><pages>3787-3797</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5–2.6 h for a typical illumination range of 10–100 μmol photons m–2 s–1, respectively, with corresponding cell doubling times of 8.2–3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2–8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3–4 orders of magnitude shorter for the chromatophore than for synthetic systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28301162</pmid><doi>10.1021/acs.jpcb.6b12335</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6773-6333</orcidid><orcidid>https://orcid.org/0000-0003-2533-9783</orcidid><orcidid>https://orcid.org/0000000267736333</orcidid><orcidid>https://orcid.org/0000000325339783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2017-04, Vol.121 (15), p.3787-3797
issn 1520-6106
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6362981
source ACS Publications; MEDLINE
subjects 09 BIOMASS FUELS
absorbance
adenosine triphosphate
Adenosine Triphosphate - biosynthesis
Bacterial Chromatophores - chemistry
Bacterial Chromatophores - metabolism
BASIC BIOLOGICAL SCIENCES
bio-inspired
biofuels (including algae and biomass)
charge transport
chromatophores
energy conversion
energy expenditure
fossil fuels
Light-Harvesting Protein Complexes - chemistry
Light-Harvesting Protein Complexes - metabolism
lighting
membrane
Molecular Dynamics Simulation
photons
photosynthesis
photosynthesis (natural and artificial)
physical chemistry
Protein Conformation
Rhodobacter sphaeroides
Rhodobacter sphaeroides - chemistry
Rhodobacter sphaeroides - cytology
Rhodobacter sphaeroides - metabolism
solar (fuels)
synthesis (novel materials)
synthesis (self-assembly)
Time Factors
title Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Cell%20Doubling%20Times%20from%20the%20Return-on-Investment%20Time%20of%20Photosynthetic%20Vesicles%20Based%20on%20Atomic%20Detail%20Structural%20Models&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Hitchcock,%20Andrew&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Photosynthetic%20Antenna%20Research%20Center%20(PARC)&rft.date=2017-04-20&rft.volume=121&rft.issue=15&rft.spage=3787&rft.epage=3797&rft.pages=3787-3797&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.6b12335&rft_dat=%3Cproquest_pubme%3E1878824736%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878824736&rft_id=info:pmid/28301162&rfr_iscdi=true