Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models
Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described ba...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2017-04, Vol.121 (15), p.3787-3797 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3797 |
---|---|
container_issue | 15 |
container_start_page | 3787 |
container_title | The journal of physical chemistry. B |
container_volume | 121 |
creator | Hitchcock, Andrew Hunter, C. Neil Sener, Melih |
description | Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5–2.6 h for a typical illumination range of 10–100 μmol photons m–2 s–1, respectively, with corresponding cell doubling times of 8.2–3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2–8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3–4 orders of magnitude shorter for the chromatophore than for synthetic systems. |
doi_str_mv | 10.1021/acs.jpcb.6b12335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6362981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1878824736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a530t-991b6749b23503ecec2322bbbb6db3fe7329d627383de310f093f202f85d463</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSNERR-wZ4UsVizI1I_EcTZIZcqjUhGIVmwtx7npuErswXYq9Tf0T3OnM1RlUWHJsiV_51z7-hTFa0YXjHJ2bGxaXK9tt5Ad40LUz4oDVnNa4mye7_aSUblfHKZ0TSmvuZIvin2uBGVM8oPi7hQyxMl5k13wJAxkCeNITsPcjc5fkUs3QSJDDBPJKyA_Ic_Rl8GXZ_4GUp7A53tmo_yxCjmkW49gdpb8guTsiOqPJkFP0P0khwkPsKRxI7nIcbZoZ0byLfQwppfF3mDGBK9261Fx8fnT5fJref79y9ny5Lw0taC5bFvWyaZqOy5qKsCC5YLzDofsOzFAI3jbS94IJXoQjA60FQOnfFB1X0lxVHzYuq7nboLe4gvwCnod3WTirQ7G6X9PvFvpq3CjpZC8VQwN3m4NQspOJ-sy2JUN3oPNmgmlatog9G5XJYbfM3ZKTy5ZbK3xEOakOaW0qirZyv-iTDVK8aoRG5RuURtDShGGh2szqjeJ0JgIvUmE3iUCJW8eP_dB8DcCCLzfAvfSgN-LvX_a7w-OmcQN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878824736</pqid></control><display><type>article</type><title>Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models</title><source>ACS Publications</source><source>MEDLINE</source><creator>Hitchcock, Andrew ; Hunter, C. Neil ; Sener, Melih</creator><creatorcontrib>Hitchcock, Andrew ; Hunter, C. Neil ; Sener, Melih ; Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</creatorcontrib><description>Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5–2.6 h for a typical illumination range of 10–100 μmol photons m–2 s–1, respectively, with corresponding cell doubling times of 8.2–3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2–8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3–4 orders of magnitude shorter for the chromatophore than for synthetic systems.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.6b12335</identifier><identifier>PMID: 28301162</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>09 BIOMASS FUELS ; absorbance ; adenosine triphosphate ; Adenosine Triphosphate - biosynthesis ; Bacterial Chromatophores - chemistry ; Bacterial Chromatophores - metabolism ; BASIC BIOLOGICAL SCIENCES ; bio-inspired ; biofuels (including algae and biomass) ; charge transport ; chromatophores ; energy conversion ; energy expenditure ; fossil fuels ; Light-Harvesting Protein Complexes - chemistry ; Light-Harvesting Protein Complexes - metabolism ; lighting ; membrane ; Molecular Dynamics Simulation ; photons ; photosynthesis ; photosynthesis (natural and artificial) ; physical chemistry ; Protein Conformation ; Rhodobacter sphaeroides ; Rhodobacter sphaeroides - chemistry ; Rhodobacter sphaeroides - cytology ; Rhodobacter sphaeroides - metabolism ; solar (fuels) ; synthesis (novel materials) ; synthesis (self-assembly) ; Time Factors</subject><ispartof>The journal of physical chemistry. B, 2017-04, Vol.121 (15), p.3787-3797</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a530t-991b6749b23503ecec2322bbbb6db3fe7329d627383de310f093f202f85d463</citedby><cites>FETCH-LOGICAL-a530t-991b6749b23503ecec2322bbbb6db3fe7329d627383de310f093f202f85d463</cites><orcidid>0000-0002-6773-6333 ; 0000-0003-2533-9783 ; 0000000267736333 ; 0000000325339783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.6b12335$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.6b12335$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28301162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1388507$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hitchcock, Andrew</creatorcontrib><creatorcontrib>Hunter, C. Neil</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</creatorcontrib><title>Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5–2.6 h for a typical illumination range of 10–100 μmol photons m–2 s–1, respectively, with corresponding cell doubling times of 8.2–3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2–8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3–4 orders of magnitude shorter for the chromatophore than for synthetic systems.</description><subject>09 BIOMASS FUELS</subject><subject>absorbance</subject><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Bacterial Chromatophores - chemistry</subject><subject>Bacterial Chromatophores - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>bio-inspired</subject><subject>biofuels (including algae and biomass)</subject><subject>charge transport</subject><subject>chromatophores</subject><subject>energy conversion</subject><subject>energy expenditure</subject><subject>fossil fuels</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>lighting</subject><subject>membrane</subject><subject>Molecular Dynamics Simulation</subject><subject>photons</subject><subject>photosynthesis</subject><subject>photosynthesis (natural and artificial)</subject><subject>physical chemistry</subject><subject>Protein Conformation</subject><subject>Rhodobacter sphaeroides</subject><subject>Rhodobacter sphaeroides - chemistry</subject><subject>Rhodobacter sphaeroides - cytology</subject><subject>Rhodobacter sphaeroides - metabolism</subject><subject>solar (fuels)</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><subject>Time Factors</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAUhSNERR-wZ4UsVizI1I_EcTZIZcqjUhGIVmwtx7npuErswXYq9Tf0T3OnM1RlUWHJsiV_51z7-hTFa0YXjHJ2bGxaXK9tt5Ad40LUz4oDVnNa4mye7_aSUblfHKZ0TSmvuZIvin2uBGVM8oPi7hQyxMl5k13wJAxkCeNITsPcjc5fkUs3QSJDDBPJKyA_Ic_Rl8GXZ_4GUp7A53tmo_yxCjmkW49gdpb8guTsiOqPJkFP0P0khwkPsKRxI7nIcbZoZ0byLfQwppfF3mDGBK9261Fx8fnT5fJref79y9ny5Lw0taC5bFvWyaZqOy5qKsCC5YLzDofsOzFAI3jbS94IJXoQjA60FQOnfFB1X0lxVHzYuq7nboLe4gvwCnod3WTirQ7G6X9PvFvpq3CjpZC8VQwN3m4NQspOJ-sy2JUN3oPNmgmlatog9G5XJYbfM3ZKTy5ZbK3xEOakOaW0qirZyv-iTDVK8aoRG5RuURtDShGGh2szqjeJ0JgIvUmE3iUCJW8eP_dB8DcCCLzfAvfSgN-LvX_a7w-OmcQN</recordid><startdate>20170420</startdate><enddate>20170420</enddate><creator>Hitchcock, Andrew</creator><creator>Hunter, C. Neil</creator><creator>Sener, Melih</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6773-6333</orcidid><orcidid>https://orcid.org/0000-0003-2533-9783</orcidid><orcidid>https://orcid.org/0000000267736333</orcidid><orcidid>https://orcid.org/0000000325339783</orcidid></search><sort><creationdate>20170420</creationdate><title>Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models</title><author>Hitchcock, Andrew ; Hunter, C. Neil ; Sener, Melih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a530t-991b6749b23503ecec2322bbbb6db3fe7329d627383de310f093f202f85d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>09 BIOMASS FUELS</topic><topic>absorbance</topic><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Bacterial Chromatophores - chemistry</topic><topic>Bacterial Chromatophores - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>bio-inspired</topic><topic>biofuels (including algae and biomass)</topic><topic>charge transport</topic><topic>chromatophores</topic><topic>energy conversion</topic><topic>energy expenditure</topic><topic>fossil fuels</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>lighting</topic><topic>membrane</topic><topic>Molecular Dynamics Simulation</topic><topic>photons</topic><topic>photosynthesis</topic><topic>photosynthesis (natural and artificial)</topic><topic>physical chemistry</topic><topic>Protein Conformation</topic><topic>Rhodobacter sphaeroides</topic><topic>Rhodobacter sphaeroides - chemistry</topic><topic>Rhodobacter sphaeroides - cytology</topic><topic>Rhodobacter sphaeroides - metabolism</topic><topic>solar (fuels)</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hitchcock, Andrew</creatorcontrib><creatorcontrib>Hunter, C. Neil</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hitchcock, Andrew</au><au>Hunter, C. Neil</au><au>Sener, Melih</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2017-04-20</date><risdate>2017</risdate><volume>121</volume><issue>15</issue><spage>3787</spage><epage>3797</epage><pages>3787-3797</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5–2.6 h for a typical illumination range of 10–100 μmol photons m–2 s–1, respectively, with corresponding cell doubling times of 8.2–3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2–8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3–4 orders of magnitude shorter for the chromatophore than for synthetic systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28301162</pmid><doi>10.1021/acs.jpcb.6b12335</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6773-6333</orcidid><orcidid>https://orcid.org/0000-0003-2533-9783</orcidid><orcidid>https://orcid.org/0000000267736333</orcidid><orcidid>https://orcid.org/0000000325339783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2017-04, Vol.121 (15), p.3787-3797 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6362981 |
source | ACS Publications; MEDLINE |
subjects | 09 BIOMASS FUELS absorbance adenosine triphosphate Adenosine Triphosphate - biosynthesis Bacterial Chromatophores - chemistry Bacterial Chromatophores - metabolism BASIC BIOLOGICAL SCIENCES bio-inspired biofuels (including algae and biomass) charge transport chromatophores energy conversion energy expenditure fossil fuels Light-Harvesting Protein Complexes - chemistry Light-Harvesting Protein Complexes - metabolism lighting membrane Molecular Dynamics Simulation photons photosynthesis photosynthesis (natural and artificial) physical chemistry Protein Conformation Rhodobacter sphaeroides Rhodobacter sphaeroides - chemistry Rhodobacter sphaeroides - cytology Rhodobacter sphaeroides - metabolism solar (fuels) synthesis (novel materials) synthesis (self-assembly) Time Factors |
title | Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Cell%20Doubling%20Times%20from%20the%20Return-on-Investment%20Time%20of%20Photosynthetic%20Vesicles%20Based%20on%20Atomic%20Detail%20Structural%20Models&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Hitchcock,%20Andrew&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Photosynthetic%20Antenna%20Research%20Center%20(PARC)&rft.date=2017-04-20&rft.volume=121&rft.issue=15&rft.spage=3787&rft.epage=3797&rft.pages=3787-3797&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.6b12335&rft_dat=%3Cproquest_pubme%3E1878824736%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878824736&rft_id=info:pmid/28301162&rfr_iscdi=true |