Nucleic acid memory
In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragil...
Gespeichert in:
Veröffentlicht in: | Nature materials 2016-04, Vol.15 (4), p.366-370 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 4 |
container_start_page | 366 |
container_title | Nature materials |
container_volume | 15 |
creator | Zhirnov, Victor Zadegan, Reza M. Sandhu, Gurtej S. Church, George M. Hughes, William L. |
description | In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragile and therefore unreliable. This is not the case. For example, the room-temperature half-life of ancient DNA exceeds 100years1,2. Indeed, the complete genomes of an ~50,000-year-old Neanderthal3 recovered from Siberia and an ~700,000-year-old horse4 recovered from the Arctic permafrost (approximate average temperature 4 C) have been sequenced. Still, the long-term stability of DNA and its decay kinetics are poorly understood at a per-bit (that is, base) level. As an energy-barrier model shows (Methods), DNA hasa retention time far exceeding electronic memory, and it can store information reliably over time. Through rst-principle calculations, DNA has been validatedas a model material for future NAM products (Supplementary Information section8). Therefore, we call for increased cooperation between the biotechnology and semiconductor sectors to pair previously unfathomable technological advances such as those from the Human Genome Project with the scaling expertise of the semiconductor industry. |
doi_str_mv | 10.1038/nmat4594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4023393101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-81d01780e5ae993af381578e9b12d6a2f3cbdab0e48878ea2d527b264894b88b3</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4MotlZB8C4FL3pYzeS9F0GKLyh60XPIZrN1yz5qsiv0vzfSB7WnDJmPb2Z-CJ0DvgVM1V1Tm47xlB2gITApEiYEPlzXAIQM0EkIc4wJcC6O0YBIjHmK0yG6eOtt5Uo7NrbMx7WrW788RUeFqYI7W78j9Pn0-DF5Sabvz6-Th2liGWVdoiDHIBV23Lg0paagCrhULs2A5MKQgtosNxl2TKn4bUjOicyIYCplmVIZHaH7lXfRZ7XLrWs6byq98GVt_FK3ptT_O035pWftjxZUAAcZBddrgW-_exc6XZfBuqoyjWv7oEFKLiikBCJ6tYfO29438bxIKQAhOd4RWt-G4F2xXQaw_ktab5KO6OXu8ltwE20EblZAiK1m5vzOxH3ZL46uhUU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781167507</pqid></control><display><type>article</type><title>Nucleic acid memory</title><source>MEDLINE</source><source>Springer Journals</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Zhirnov, Victor ; Zadegan, Reza M. ; Sandhu, Gurtej S. ; Church, George M. ; Hughes, William L.</creator><creatorcontrib>Zhirnov, Victor ; Zadegan, Reza M. ; Sandhu, Gurtej S. ; Church, George M. ; Hughes, William L.</creatorcontrib><description>In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragile and therefore unreliable. This is not the case. For example, the room-temperature half-life of ancient DNA exceeds 100years1,2. Indeed, the complete genomes of an ~50,000-year-old Neanderthal3 recovered from Siberia and an ~700,000-year-old horse4 recovered from the Arctic permafrost (approximate average temperature 4 C) have been sequenced. Still, the long-term stability of DNA and its decay kinetics are poorly understood at a per-bit (that is, base) level. As an energy-barrier model shows (Methods), DNA hasa retention time far exceeding electronic memory, and it can store information reliably over time. Through rst-principle calculations, DNA has been validatedas a model material for future NAM products (Supplementary Information section8). Therefore, we call for increased cooperation between the biotechnology and semiconductor sectors to pair previously unfathomable technological advances such as those from the Human Genome Project with the scaling expertise of the semiconductor industry.</description><identifier>ISSN: 1476-1122</identifier><identifier>ISSN: 1476-4660</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4594</identifier><identifier>PMID: 27005909</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1008 ; 639/638/92/147 ; 639/925 ; Acids ; Biomaterials ; Biotechnology ; commentary ; Condensed Matter Physics ; Deoxyribonucleic acid ; DNA ; Information Storage and Retrieval ; Materials Science ; Memory ; Nanotechnology ; Nucleic acids ; Nucleic Acids - chemistry ; Optical and Electronic Materials ; Permafrost ; Retention ; Retention time</subject><ispartof>Nature materials, 2016-04, Vol.15 (4), p.366-370</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-81d01780e5ae993af381578e9b12d6a2f3cbdab0e48878ea2d527b264894b88b3</citedby><cites>FETCH-LOGICAL-c434t-81d01780e5ae993af381578e9b12d6a2f3cbdab0e48878ea2d527b264894b88b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4594$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4594$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27005909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhirnov, Victor</creatorcontrib><creatorcontrib>Zadegan, Reza M.</creatorcontrib><creatorcontrib>Sandhu, Gurtej S.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Hughes, William L.</creatorcontrib><title>Nucleic acid memory</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragile and therefore unreliable. This is not the case. For example, the room-temperature half-life of ancient DNA exceeds 100years1,2. Indeed, the complete genomes of an ~50,000-year-old Neanderthal3 recovered from Siberia and an ~700,000-year-old horse4 recovered from the Arctic permafrost (approximate average temperature 4 C) have been sequenced. Still, the long-term stability of DNA and its decay kinetics are poorly understood at a per-bit (that is, base) level. As an energy-barrier model shows (Methods), DNA hasa retention time far exceeding electronic memory, and it can store information reliably over time. Through rst-principle calculations, DNA has been validatedas a model material for future NAM products (Supplementary Information section8). Therefore, we call for increased cooperation between the biotechnology and semiconductor sectors to pair previously unfathomable technological advances such as those from the Human Genome Project with the scaling expertise of the semiconductor industry.</description><subject>639/301/1005/1008</subject><subject>639/638/92/147</subject><subject>639/925</subject><subject>Acids</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>commentary</subject><subject>Condensed Matter Physics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Information Storage and Retrieval</subject><subject>Materials Science</subject><subject>Memory</subject><subject>Nanotechnology</subject><subject>Nucleic acids</subject><subject>Nucleic Acids - chemistry</subject><subject>Optical and Electronic Materials</subject><subject>Permafrost</subject><subject>Retention</subject><subject>Retention time</subject><issn>1476-1122</issn><issn>1476-4660</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkMtLAzEQh4MotlZB8C4FL3pYzeS9F0GKLyh60XPIZrN1yz5qsiv0vzfSB7WnDJmPb2Z-CJ0DvgVM1V1Tm47xlB2gITApEiYEPlzXAIQM0EkIc4wJcC6O0YBIjHmK0yG6eOtt5Uo7NrbMx7WrW788RUeFqYI7W78j9Pn0-DF5Sabvz6-Th2liGWVdoiDHIBV23Lg0paagCrhULs2A5MKQgtosNxl2TKn4bUjOicyIYCplmVIZHaH7lXfRZ7XLrWs6byq98GVt_FK3ptT_O035pWftjxZUAAcZBddrgW-_exc6XZfBuqoyjWv7oEFKLiikBCJ6tYfO29438bxIKQAhOd4RWt-G4F2xXQaw_ktab5KO6OXu8ltwE20EblZAiK1m5vzOxH3ZL46uhUU</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Zhirnov, Victor</creator><creator>Zadegan, Reza M.</creator><creator>Sandhu, Gurtej S.</creator><creator>Church, George M.</creator><creator>Hughes, William L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160401</creationdate><title>Nucleic acid memory</title><author>Zhirnov, Victor ; Zadegan, Reza M. ; Sandhu, Gurtej S. ; Church, George M. ; Hughes, William L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-81d01780e5ae993af381578e9b12d6a2f3cbdab0e48878ea2d527b264894b88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/1005/1008</topic><topic>639/638/92/147</topic><topic>639/925</topic><topic>Acids</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>commentary</topic><topic>Condensed Matter Physics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Information Storage and Retrieval</topic><topic>Materials Science</topic><topic>Memory</topic><topic>Nanotechnology</topic><topic>Nucleic acids</topic><topic>Nucleic Acids - chemistry</topic><topic>Optical and Electronic Materials</topic><topic>Permafrost</topic><topic>Retention</topic><topic>Retention time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhirnov, Victor</creatorcontrib><creatorcontrib>Zadegan, Reza M.</creatorcontrib><creatorcontrib>Sandhu, Gurtej S.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Hughes, William L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhirnov, Victor</au><au>Zadegan, Reza M.</au><au>Sandhu, Gurtej S.</au><au>Church, George M.</au><au>Hughes, William L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleic acid memory</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>15</volume><issue>4</issue><spage>366</spage><epage>370</epage><pages>366-370</pages><issn>1476-1122</issn><issn>1476-4660</issn><eissn>1476-4660</eissn><abstract>In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragile and therefore unreliable. This is not the case. For example, the room-temperature half-life of ancient DNA exceeds 100years1,2. Indeed, the complete genomes of an ~50,000-year-old Neanderthal3 recovered from Siberia and an ~700,000-year-old horse4 recovered from the Arctic permafrost (approximate average temperature 4 C) have been sequenced. Still, the long-term stability of DNA and its decay kinetics are poorly understood at a per-bit (that is, base) level. As an energy-barrier model shows (Methods), DNA hasa retention time far exceeding electronic memory, and it can store information reliably over time. Through rst-principle calculations, DNA has been validatedas a model material for future NAM products (Supplementary Information section8). Therefore, we call for increased cooperation between the biotechnology and semiconductor sectors to pair previously unfathomable technological advances such as those from the Human Genome Project with the scaling expertise of the semiconductor industry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27005909</pmid><doi>10.1038/nmat4594</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2016-04, Vol.15 (4), p.366-370 |
issn | 1476-1122 1476-4660 1476-4660 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361517 |
source | MEDLINE; Springer Journals; Springer Nature - Connect here FIRST to enable access |
subjects | 639/301/1005/1008 639/638/92/147 639/925 Acids Biomaterials Biotechnology commentary Condensed Matter Physics Deoxyribonucleic acid DNA Information Storage and Retrieval Materials Science Memory Nanotechnology Nucleic acids Nucleic Acids - chemistry Optical and Electronic Materials Permafrost Retention Retention time |
title | Nucleic acid memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T01%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleic%20acid%20memory&rft.jtitle=Nature%20materials&rft.au=Zhirnov,%20Victor&rft.date=2016-04-01&rft.volume=15&rft.issue=4&rft.spage=366&rft.epage=370&rft.pages=366-370&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4594&rft_dat=%3Cproquest_pubme%3E4023393101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781167507&rft_id=info:pmid/27005909&rfr_iscdi=true |