Nucleic acid memory

In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2016-04, Vol.15 (4), p.366-370
Hauptverfasser: Zhirnov, Victor, Zadegan, Reza M., Sandhu, Gurtej S., Church, George M., Hughes, William L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 4
container_start_page 366
container_title Nature materials
container_volume 15
creator Zhirnov, Victor
Zadegan, Reza M.
Sandhu, Gurtej S.
Church, George M.
Hughes, William L.
description In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragile and therefore unreliable. This is not the case. For example, the room-temperature half-life of ancient DNA exceeds 100years1,2. Indeed, the complete genomes of an ~50,000-year-old Neanderthal3 recovered from Siberia and an ~700,000-year-old horse4 recovered from the Arctic permafrost (approximate average temperature 4 C) have been sequenced. Still, the long-term stability of DNA and its decay kinetics are poorly understood at a per-bit (that is, base) level. As an energy-barrier model shows (Methods), DNA hasa retention time far exceeding electronic memory, and it can store information reliably over time. Through rst-principle calculations, DNA has been validatedas a model material for future NAM products (Supplementary Information section8). Therefore, we call for increased cooperation between the biotechnology and semiconductor sectors to pair previously unfathomable technological advances such as those from the Human Genome Project with the scaling expertise of the semiconductor industry.
doi_str_mv 10.1038/nmat4594
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4023393101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-81d01780e5ae993af381578e9b12d6a2f3cbdab0e48878ea2d527b264894b88b3</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4MotlZB8C4FL3pYzeS9F0GKLyh60XPIZrN1yz5qsiv0vzfSB7WnDJmPb2Z-CJ0DvgVM1V1Tm47xlB2gITApEiYEPlzXAIQM0EkIc4wJcC6O0YBIjHmK0yG6eOtt5Uo7NrbMx7WrW788RUeFqYI7W78j9Pn0-DF5Sabvz6-Th2liGWVdoiDHIBV23Lg0paagCrhULs2A5MKQgtosNxl2TKn4bUjOicyIYCplmVIZHaH7lXfRZ7XLrWs6byq98GVt_FK3ptT_O035pWftjxZUAAcZBddrgW-_exc6XZfBuqoyjWv7oEFKLiikBCJ6tYfO29438bxIKQAhOd4RWt-G4F2xXQaw_ktab5KO6OXu8ltwE20EblZAiK1m5vzOxH3ZL46uhUU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781167507</pqid></control><display><type>article</type><title>Nucleic acid memory</title><source>MEDLINE</source><source>Springer Journals</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Zhirnov, Victor ; Zadegan, Reza M. ; Sandhu, Gurtej S. ; Church, George M. ; Hughes, William L.</creator><creatorcontrib>Zhirnov, Victor ; Zadegan, Reza M. ; Sandhu, Gurtej S. ; Church, George M. ; Hughes, William L.</creatorcontrib><description>In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragile and therefore unreliable. This is not the case. For example, the room-temperature half-life of ancient DNA exceeds 100years1,2. Indeed, the complete genomes of an ~50,000-year-old Neanderthal3 recovered from Siberia and an ~700,000-year-old horse4 recovered from the Arctic permafrost (approximate average temperature 4 C) have been sequenced. Still, the long-term stability of DNA and its decay kinetics are poorly understood at a per-bit (that is, base) level. As an energy-barrier model shows (Methods), DNA hasa retention time far exceeding electronic memory, and it can store information reliably over time. Through rst-principle calculations, DNA has been validatedas a model material for future NAM products (Supplementary Information section8). Therefore, we call for increased cooperation between the biotechnology and semiconductor sectors to pair previously unfathomable technological advances such as those from the Human Genome Project with the scaling expertise of the semiconductor industry.</description><identifier>ISSN: 1476-1122</identifier><identifier>ISSN: 1476-4660</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4594</identifier><identifier>PMID: 27005909</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1008 ; 639/638/92/147 ; 639/925 ; Acids ; Biomaterials ; Biotechnology ; commentary ; Condensed Matter Physics ; Deoxyribonucleic acid ; DNA ; Information Storage and Retrieval ; Materials Science ; Memory ; Nanotechnology ; Nucleic acids ; Nucleic Acids - chemistry ; Optical and Electronic Materials ; Permafrost ; Retention ; Retention time</subject><ispartof>Nature materials, 2016-04, Vol.15 (4), p.366-370</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-81d01780e5ae993af381578e9b12d6a2f3cbdab0e48878ea2d527b264894b88b3</citedby><cites>FETCH-LOGICAL-c434t-81d01780e5ae993af381578e9b12d6a2f3cbdab0e48878ea2d527b264894b88b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4594$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4594$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27005909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhirnov, Victor</creatorcontrib><creatorcontrib>Zadegan, Reza M.</creatorcontrib><creatorcontrib>Sandhu, Gurtej S.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Hughes, William L.</creatorcontrib><title>Nucleic acid memory</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragile and therefore unreliable. This is not the case. For example, the room-temperature half-life of ancient DNA exceeds 100years1,2. Indeed, the complete genomes of an ~50,000-year-old Neanderthal3 recovered from Siberia and an ~700,000-year-old horse4 recovered from the Arctic permafrost (approximate average temperature 4 C) have been sequenced. Still, the long-term stability of DNA and its decay kinetics are poorly understood at a per-bit (that is, base) level. As an energy-barrier model shows (Methods), DNA hasa retention time far exceeding electronic memory, and it can store information reliably over time. Through rst-principle calculations, DNA has been validatedas a model material for future NAM products (Supplementary Information section8). Therefore, we call for increased cooperation between the biotechnology and semiconductor sectors to pair previously unfathomable technological advances such as those from the Human Genome Project with the scaling expertise of the semiconductor industry.</description><subject>639/301/1005/1008</subject><subject>639/638/92/147</subject><subject>639/925</subject><subject>Acids</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>commentary</subject><subject>Condensed Matter Physics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Information Storage and Retrieval</subject><subject>Materials Science</subject><subject>Memory</subject><subject>Nanotechnology</subject><subject>Nucleic acids</subject><subject>Nucleic Acids - chemistry</subject><subject>Optical and Electronic Materials</subject><subject>Permafrost</subject><subject>Retention</subject><subject>Retention time</subject><issn>1476-1122</issn><issn>1476-4660</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkMtLAzEQh4MotlZB8C4FL3pYzeS9F0GKLyh60XPIZrN1yz5qsiv0vzfSB7WnDJmPb2Z-CJ0DvgVM1V1Tm47xlB2gITApEiYEPlzXAIQM0EkIc4wJcC6O0YBIjHmK0yG6eOtt5Uo7NrbMx7WrW788RUeFqYI7W78j9Pn0-DF5Sabvz6-Th2liGWVdoiDHIBV23Lg0paagCrhULs2A5MKQgtosNxl2TKn4bUjOicyIYCplmVIZHaH7lXfRZ7XLrWs6byq98GVt_FK3ptT_O035pWftjxZUAAcZBddrgW-_exc6XZfBuqoyjWv7oEFKLiikBCJ6tYfO29438bxIKQAhOd4RWt-G4F2xXQaw_ktab5KO6OXu8ltwE20EblZAiK1m5vzOxH3ZL46uhUU</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Zhirnov, Victor</creator><creator>Zadegan, Reza M.</creator><creator>Sandhu, Gurtej S.</creator><creator>Church, George M.</creator><creator>Hughes, William L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160401</creationdate><title>Nucleic acid memory</title><author>Zhirnov, Victor ; Zadegan, Reza M. ; Sandhu, Gurtej S. ; Church, George M. ; Hughes, William L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-81d01780e5ae993af381578e9b12d6a2f3cbdab0e48878ea2d527b264894b88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/1005/1008</topic><topic>639/638/92/147</topic><topic>639/925</topic><topic>Acids</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>commentary</topic><topic>Condensed Matter Physics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Information Storage and Retrieval</topic><topic>Materials Science</topic><topic>Memory</topic><topic>Nanotechnology</topic><topic>Nucleic acids</topic><topic>Nucleic Acids - chemistry</topic><topic>Optical and Electronic Materials</topic><topic>Permafrost</topic><topic>Retention</topic><topic>Retention time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhirnov, Victor</creatorcontrib><creatorcontrib>Zadegan, Reza M.</creatorcontrib><creatorcontrib>Sandhu, Gurtej S.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Hughes, William L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhirnov, Victor</au><au>Zadegan, Reza M.</au><au>Sandhu, Gurtej S.</au><au>Church, George M.</au><au>Hughes, William L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleic acid memory</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>15</volume><issue>4</issue><spage>366</spage><epage>370</epage><pages>366-370</pages><issn>1476-1122</issn><issn>1476-4660</issn><eissn>1476-4660</eissn><abstract>In this Commentary, we discussthe information retention, density and energetics of NAM specically related to DNA for non-biological and non-volatile memory applications, ranging from letters to libraries. The potential of NAM has oen been dismissed, as nucleic acids are believed by some to be fragile and therefore unreliable. This is not the case. For example, the room-temperature half-life of ancient DNA exceeds 100years1,2. Indeed, the complete genomes of an ~50,000-year-old Neanderthal3 recovered from Siberia and an ~700,000-year-old horse4 recovered from the Arctic permafrost (approximate average temperature 4 C) have been sequenced. Still, the long-term stability of DNA and its decay kinetics are poorly understood at a per-bit (that is, base) level. As an energy-barrier model shows (Methods), DNA hasa retention time far exceeding electronic memory, and it can store information reliably over time. Through rst-principle calculations, DNA has been validatedas a model material for future NAM products (Supplementary Information section8). Therefore, we call for increased cooperation between the biotechnology and semiconductor sectors to pair previously unfathomable technological advances such as those from the Human Genome Project with the scaling expertise of the semiconductor industry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27005909</pmid><doi>10.1038/nmat4594</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2016-04, Vol.15 (4), p.366-370
issn 1476-1122
1476-4660
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361517
source MEDLINE; Springer Journals; Springer Nature - Connect here FIRST to enable access
subjects 639/301/1005/1008
639/638/92/147
639/925
Acids
Biomaterials
Biotechnology
commentary
Condensed Matter Physics
Deoxyribonucleic acid
DNA
Information Storage and Retrieval
Materials Science
Memory
Nanotechnology
Nucleic acids
Nucleic Acids - chemistry
Optical and Electronic Materials
Permafrost
Retention
Retention time
title Nucleic acid memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T01%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleic%20acid%20memory&rft.jtitle=Nature%20materials&rft.au=Zhirnov,%20Victor&rft.date=2016-04-01&rft.volume=15&rft.issue=4&rft.spage=366&rft.epage=370&rft.pages=366-370&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4594&rft_dat=%3Cproquest_pubme%3E4023393101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781167507&rft_id=info:pmid/27005909&rfr_iscdi=true