Automatic recognition of ligands in electron density by machine learning
Abstract Motivation The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-02, Vol.35 (3), p.452-461 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 461 |
---|---|
container_issue | 3 |
container_start_page | 452 |
container_title | Bioinformatics |
container_volume | 35 |
creator | Kowiel, Marcin Brzezinski, Dariusz Porebski, Przemyslaw J Shabalin, Ivan G Jaskolski, Mariusz Minor, Wladek |
description | Abstract
Motivation
The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods, but existing approaches are based on time-consuming iterative fitting.
Results
Here we report a new machine learning algorithm called CheckMyBlob that identifies ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931 ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank, CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in some cases doubling the recognition rates, while requiring significantly less time. Our work shows that machine learning can improve the automation of structure modeling and significantly accelerate the drug screening process of macromolecule-ligand complexes.
Availability and implementation
Code and data are available on GitHub at https://github.com/dabrze/CheckMyBlob.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/bty626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/bty626</oup_id><sourcerecordid>2071573043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-1ac62ab2deefd58bd25f53767b1b713912d28c09a6eccc2c52209c8d6b26c44a3</originalsourceid><addsrcrecordid>eNqNkU9LwzAYh4Mobk4_gtKjl2r-t70IY6gTBl70HJI03SJtMpNU2Le3ujncSU8JyfN7eF9-AFwieINgRW6V9dY1PnQyWR1vVdpwzI_AGFEOcwxZdTzcCS9yWkIyAmcxvkHIEKX0FIwIhIhTWIzBfNon_-3IgtF-6Wyy3mW-yVq7lK6OmXWZaY1OYXiujYs2bTK1yTqpV9aZrDUyOOuW5-CkkW00F7tzAl4f7l9m83zx_Pg0my5yzRhKOZKaY6lwbUxTs1LVmDWMFLxQSBWIVAjXuNSwktxorbFmGMNKlzVXmGtKJZmAu6133avO1Nq4FGQr1sF2MmyEl1Yc_ji7Ekv_ITjhCBM-CK53guDfexOT6GzUpm2lM76PApdlUVUlrvDfKCwQKwikZEDZFtXBxxhMs58IQfFVmDgsTGwLG3JXv9fZp34aGgC4BXy__qfzE-KJqoo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071573043</pqid></control><display><type>article</type><title>Automatic recognition of ligands in electron density by machine learning</title><source>Oxford Journals Open Access Collection</source><creator>Kowiel, Marcin ; Brzezinski, Dariusz ; Porebski, Przemyslaw J ; Shabalin, Ivan G ; Jaskolski, Mariusz ; Minor, Wladek</creator><creatorcontrib>Kowiel, Marcin ; Brzezinski, Dariusz ; Porebski, Przemyslaw J ; Shabalin, Ivan G ; Jaskolski, Mariusz ; Minor, Wladek</creatorcontrib><description>Abstract
Motivation
The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods, but existing approaches are based on time-consuming iterative fitting.
Results
Here we report a new machine learning algorithm called CheckMyBlob that identifies ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931 ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank, CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in some cases doubling the recognition rates, while requiring significantly less time. Our work shows that machine learning can improve the automation of structure modeling and significantly accelerate the drug screening process of macromolecule-ligand complexes.
Availability and implementation
Code and data are available on GitHub at https://github.com/dabrze/CheckMyBlob.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1460-2059</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty626</identifier><identifier>PMID: 30016407</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; automatic detection ; Binding Sites ; bioinformatics ; cognition ; drug design ; drugs ; Electrons ; Ligands ; Machine Learning ; Original Papers ; Protein Binding</subject><ispartof>Bioinformatics, 2019-02, Vol.35 (3), p.452-461</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-1ac62ab2deefd58bd25f53767b1b713912d28c09a6eccc2c52209c8d6b26c44a3</citedby><cites>FETCH-LOGICAL-c551t-1ac62ab2deefd58bd25f53767b1b713912d28c09a6eccc2c52209c8d6b26c44a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361236/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361236/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/bty626$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30016407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowiel, Marcin</creatorcontrib><creatorcontrib>Brzezinski, Dariusz</creatorcontrib><creatorcontrib>Porebski, Przemyslaw J</creatorcontrib><creatorcontrib>Shabalin, Ivan G</creatorcontrib><creatorcontrib>Jaskolski, Mariusz</creatorcontrib><creatorcontrib>Minor, Wladek</creatorcontrib><title>Automatic recognition of ligands in electron density by machine learning</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods, but existing approaches are based on time-consuming iterative fitting.
Results
Here we report a new machine learning algorithm called CheckMyBlob that identifies ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931 ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank, CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in some cases doubling the recognition rates, while requiring significantly less time. Our work shows that machine learning can improve the automation of structure modeling and significantly accelerate the drug screening process of macromolecule-ligand complexes.
Availability and implementation
Code and data are available on GitHub at https://github.com/dabrze/CheckMyBlob.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>automatic detection</subject><subject>Binding Sites</subject><subject>bioinformatics</subject><subject>cognition</subject><subject>drug design</subject><subject>drugs</subject><subject>Electrons</subject><subject>Ligands</subject><subject>Machine Learning</subject><subject>Original Papers</subject><subject>Protein Binding</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9LwzAYh4Mobk4_gtKjl2r-t70IY6gTBl70HJI03SJtMpNU2Le3ujncSU8JyfN7eF9-AFwieINgRW6V9dY1PnQyWR1vVdpwzI_AGFEOcwxZdTzcCS9yWkIyAmcxvkHIEKX0FIwIhIhTWIzBfNon_-3IgtF-6Wyy3mW-yVq7lK6OmXWZaY1OYXiujYs2bTK1yTqpV9aZrDUyOOuW5-CkkW00F7tzAl4f7l9m83zx_Pg0my5yzRhKOZKaY6lwbUxTs1LVmDWMFLxQSBWIVAjXuNSwktxorbFmGMNKlzVXmGtKJZmAu6133avO1Nq4FGQr1sF2MmyEl1Yc_ji7Ekv_ITjhCBM-CK53guDfexOT6GzUpm2lM76PApdlUVUlrvDfKCwQKwikZEDZFtXBxxhMs58IQfFVmDgsTGwLG3JXv9fZp34aGgC4BXy__qfzE-KJqoo</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Kowiel, Marcin</creator><creator>Brzezinski, Dariusz</creator><creator>Porebski, Przemyslaw J</creator><creator>Shabalin, Ivan G</creator><creator>Jaskolski, Mariusz</creator><creator>Minor, Wladek</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190201</creationdate><title>Automatic recognition of ligands in electron density by machine learning</title><author>Kowiel, Marcin ; Brzezinski, Dariusz ; Porebski, Przemyslaw J ; Shabalin, Ivan G ; Jaskolski, Mariusz ; Minor, Wladek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-1ac62ab2deefd58bd25f53767b1b713912d28c09a6eccc2c52209c8d6b26c44a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>automatic detection</topic><topic>Binding Sites</topic><topic>bioinformatics</topic><topic>cognition</topic><topic>drug design</topic><topic>drugs</topic><topic>Electrons</topic><topic>Ligands</topic><topic>Machine Learning</topic><topic>Original Papers</topic><topic>Protein Binding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowiel, Marcin</creatorcontrib><creatorcontrib>Brzezinski, Dariusz</creatorcontrib><creatorcontrib>Porebski, Przemyslaw J</creatorcontrib><creatorcontrib>Shabalin, Ivan G</creatorcontrib><creatorcontrib>Jaskolski, Mariusz</creatorcontrib><creatorcontrib>Minor, Wladek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kowiel, Marcin</au><au>Brzezinski, Dariusz</au><au>Porebski, Przemyslaw J</au><au>Shabalin, Ivan G</au><au>Jaskolski, Mariusz</au><au>Minor, Wladek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic recognition of ligands in electron density by machine learning</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>452</spage><epage>461</epage><pages>452-461</pages><issn>1367-4803</issn><issn>1460-2059</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods, but existing approaches are based on time-consuming iterative fitting.
Results
Here we report a new machine learning algorithm called CheckMyBlob that identifies ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931 ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank, CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in some cases doubling the recognition rates, while requiring significantly less time. Our work shows that machine learning can improve the automation of structure modeling and significantly accelerate the drug screening process of macromolecule-ligand complexes.
Availability and implementation
Code and data are available on GitHub at https://github.com/dabrze/CheckMyBlob.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30016407</pmid><doi>10.1093/bioinformatics/bty626</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2019-02, Vol.35 (3), p.452-461 |
issn | 1367-4803 1460-2059 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361236 |
source | Oxford Journals Open Access Collection |
subjects | Algorithms automatic detection Binding Sites bioinformatics cognition drug design drugs Electrons Ligands Machine Learning Original Papers Protein Binding |
title | Automatic recognition of ligands in electron density by machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20recognition%20of%20ligands%20in%20electron%20density%20by%20machine%20learning&rft.jtitle=Bioinformatics&rft.au=Kowiel,%20Marcin&rft.date=2019-02-01&rft.volume=35&rft.issue=3&rft.spage=452&rft.epage=461&rft.pages=452-461&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/bty626&rft_dat=%3Cproquest_TOX%3E2071573043%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071573043&rft_id=info:pmid/30016407&rft_oup_id=10.1093/bioinformatics/bty626&rfr_iscdi=true |