Automatic recognition of ligands in electron density by machine learning

Abstract Motivation The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2019-02, Vol.35 (3), p.452-461
Hauptverfasser: Kowiel, Marcin, Brzezinski, Dariusz, Porebski, Przemyslaw J, Shabalin, Ivan G, Jaskolski, Mariusz, Minor, Wladek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 461
container_issue 3
container_start_page 452
container_title Bioinformatics
container_volume 35
creator Kowiel, Marcin
Brzezinski, Dariusz
Porebski, Przemyslaw J
Shabalin, Ivan G
Jaskolski, Mariusz
Minor, Wladek
description Abstract Motivation The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods, but existing approaches are based on time-consuming iterative fitting. Results Here we report a new machine learning algorithm called CheckMyBlob that identifies ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931 ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank, CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in some cases doubling the recognition rates, while requiring significantly less time. Our work shows that machine learning can improve the automation of structure modeling and significantly accelerate the drug screening process of macromolecule-ligand complexes. Availability and implementation Code and data are available on GitHub at https://github.com/dabrze/CheckMyBlob. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/bty626
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/bty626</oup_id><sourcerecordid>2071573043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-1ac62ab2deefd58bd25f53767b1b713912d28c09a6eccc2c52209c8d6b26c44a3</originalsourceid><addsrcrecordid>eNqNkU9LwzAYh4Mobk4_gtKjl2r-t70IY6gTBl70HJI03SJtMpNU2Le3ujncSU8JyfN7eF9-AFwieINgRW6V9dY1PnQyWR1vVdpwzI_AGFEOcwxZdTzcCS9yWkIyAmcxvkHIEKX0FIwIhIhTWIzBfNon_-3IgtF-6Wyy3mW-yVq7lK6OmXWZaY1OYXiujYs2bTK1yTqpV9aZrDUyOOuW5-CkkW00F7tzAl4f7l9m83zx_Pg0my5yzRhKOZKaY6lwbUxTs1LVmDWMFLxQSBWIVAjXuNSwktxorbFmGMNKlzVXmGtKJZmAu6133avO1Nq4FGQr1sF2MmyEl1Yc_ji7Ekv_ITjhCBM-CK53guDfexOT6GzUpm2lM76PApdlUVUlrvDfKCwQKwikZEDZFtXBxxhMs58IQfFVmDgsTGwLG3JXv9fZp34aGgC4BXy__qfzE-KJqoo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071573043</pqid></control><display><type>article</type><title>Automatic recognition of ligands in electron density by machine learning</title><source>Oxford Journals Open Access Collection</source><creator>Kowiel, Marcin ; Brzezinski, Dariusz ; Porebski, Przemyslaw J ; Shabalin, Ivan G ; Jaskolski, Mariusz ; Minor, Wladek</creator><creatorcontrib>Kowiel, Marcin ; Brzezinski, Dariusz ; Porebski, Przemyslaw J ; Shabalin, Ivan G ; Jaskolski, Mariusz ; Minor, Wladek</creatorcontrib><description>Abstract Motivation The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods, but existing approaches are based on time-consuming iterative fitting. Results Here we report a new machine learning algorithm called CheckMyBlob that identifies ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931 ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank, CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in some cases doubling the recognition rates, while requiring significantly less time. Our work shows that machine learning can improve the automation of structure modeling and significantly accelerate the drug screening process of macromolecule-ligand complexes. Availability and implementation Code and data are available on GitHub at https://github.com/dabrze/CheckMyBlob. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1460-2059</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty626</identifier><identifier>PMID: 30016407</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; automatic detection ; Binding Sites ; bioinformatics ; cognition ; drug design ; drugs ; Electrons ; Ligands ; Machine Learning ; Original Papers ; Protein Binding</subject><ispartof>Bioinformatics, 2019-02, Vol.35 (3), p.452-461</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-1ac62ab2deefd58bd25f53767b1b713912d28c09a6eccc2c52209c8d6b26c44a3</citedby><cites>FETCH-LOGICAL-c551t-1ac62ab2deefd58bd25f53767b1b713912d28c09a6eccc2c52209c8d6b26c44a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361236/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361236/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/bty626$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30016407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowiel, Marcin</creatorcontrib><creatorcontrib>Brzezinski, Dariusz</creatorcontrib><creatorcontrib>Porebski, Przemyslaw J</creatorcontrib><creatorcontrib>Shabalin, Ivan G</creatorcontrib><creatorcontrib>Jaskolski, Mariusz</creatorcontrib><creatorcontrib>Minor, Wladek</creatorcontrib><title>Automatic recognition of ligands in electron density by machine learning</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods, but existing approaches are based on time-consuming iterative fitting. Results Here we report a new machine learning algorithm called CheckMyBlob that identifies ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931 ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank, CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in some cases doubling the recognition rates, while requiring significantly less time. Our work shows that machine learning can improve the automation of structure modeling and significantly accelerate the drug screening process of macromolecule-ligand complexes. Availability and implementation Code and data are available on GitHub at https://github.com/dabrze/CheckMyBlob. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>automatic detection</subject><subject>Binding Sites</subject><subject>bioinformatics</subject><subject>cognition</subject><subject>drug design</subject><subject>drugs</subject><subject>Electrons</subject><subject>Ligands</subject><subject>Machine Learning</subject><subject>Original Papers</subject><subject>Protein Binding</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9LwzAYh4Mobk4_gtKjl2r-t70IY6gTBl70HJI03SJtMpNU2Le3ujncSU8JyfN7eF9-AFwieINgRW6V9dY1PnQyWR1vVdpwzI_AGFEOcwxZdTzcCS9yWkIyAmcxvkHIEKX0FIwIhIhTWIzBfNon_-3IgtF-6Wyy3mW-yVq7lK6OmXWZaY1OYXiujYs2bTK1yTqpV9aZrDUyOOuW5-CkkW00F7tzAl4f7l9m83zx_Pg0my5yzRhKOZKaY6lwbUxTs1LVmDWMFLxQSBWIVAjXuNSwktxorbFmGMNKlzVXmGtKJZmAu6133avO1Nq4FGQr1sF2MmyEl1Yc_ji7Ekv_ITjhCBM-CK53guDfexOT6GzUpm2lM76PApdlUVUlrvDfKCwQKwikZEDZFtXBxxhMs58IQfFVmDgsTGwLG3JXv9fZp34aGgC4BXy__qfzE-KJqoo</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Kowiel, Marcin</creator><creator>Brzezinski, Dariusz</creator><creator>Porebski, Przemyslaw J</creator><creator>Shabalin, Ivan G</creator><creator>Jaskolski, Mariusz</creator><creator>Minor, Wladek</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190201</creationdate><title>Automatic recognition of ligands in electron density by machine learning</title><author>Kowiel, Marcin ; Brzezinski, Dariusz ; Porebski, Przemyslaw J ; Shabalin, Ivan G ; Jaskolski, Mariusz ; Minor, Wladek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-1ac62ab2deefd58bd25f53767b1b713912d28c09a6eccc2c52209c8d6b26c44a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>automatic detection</topic><topic>Binding Sites</topic><topic>bioinformatics</topic><topic>cognition</topic><topic>drug design</topic><topic>drugs</topic><topic>Electrons</topic><topic>Ligands</topic><topic>Machine Learning</topic><topic>Original Papers</topic><topic>Protein Binding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowiel, Marcin</creatorcontrib><creatorcontrib>Brzezinski, Dariusz</creatorcontrib><creatorcontrib>Porebski, Przemyslaw J</creatorcontrib><creatorcontrib>Shabalin, Ivan G</creatorcontrib><creatorcontrib>Jaskolski, Mariusz</creatorcontrib><creatorcontrib>Minor, Wladek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kowiel, Marcin</au><au>Brzezinski, Dariusz</au><au>Porebski, Przemyslaw J</au><au>Shabalin, Ivan G</au><au>Jaskolski, Mariusz</au><au>Minor, Wladek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic recognition of ligands in electron density by machine learning</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>452</spage><epage>461</epage><pages>452-461</pages><issn>1367-4803</issn><issn>1460-2059</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods, but existing approaches are based on time-consuming iterative fitting. Results Here we report a new machine learning algorithm called CheckMyBlob that identifies ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931 ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank, CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in some cases doubling the recognition rates, while requiring significantly less time. Our work shows that machine learning can improve the automation of structure modeling and significantly accelerate the drug screening process of macromolecule-ligand complexes. Availability and implementation Code and data are available on GitHub at https://github.com/dabrze/CheckMyBlob. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30016407</pmid><doi>10.1093/bioinformatics/bty626</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2019-02, Vol.35 (3), p.452-461
issn 1367-4803
1460-2059
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361236
source Oxford Journals Open Access Collection
subjects Algorithms
automatic detection
Binding Sites
bioinformatics
cognition
drug design
drugs
Electrons
Ligands
Machine Learning
Original Papers
Protein Binding
title Automatic recognition of ligands in electron density by machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20recognition%20of%20ligands%20in%20electron%20density%20by%20machine%20learning&rft.jtitle=Bioinformatics&rft.au=Kowiel,%20Marcin&rft.date=2019-02-01&rft.volume=35&rft.issue=3&rft.spage=452&rft.epage=461&rft.pages=452-461&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/bty626&rft_dat=%3Cproquest_TOX%3E2071573043%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071573043&rft_id=info:pmid/30016407&rft_oup_id=10.1093/bioinformatics/bty626&rfr_iscdi=true