Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification

In this paper, we aim at tackling a general but interesting cross-modality feature learning question in remote sensing community—can a limited amount of highly-discriminative (e.g., hyperspectral) training data improve the performance of a classification task using a large amount of poorly-discrimin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing 2019-01, Vol.147, p.193-205
Hauptverfasser: Hong, Danfeng, Yokoya, Naoto, Ge, Nan, Chanussot, Jocelyn, Zhu, Xiao Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!