Molecular hydrophobicity at a macroscopically hydrophilic surface

Interfaces between water and silicates are ubiquitous and relevant for, among others, geochemistry, atmospheric chemistry, and chromatography. The molecular-level details of water organization at silica surfaces are important for a fundamental understanding of this interface. While silica is hydroph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-01, Vol.116 (5), p.1520-1525
Hauptverfasser: Cyran, Jenée D., Donovan, Michael A., Vollmer, Doris, Brigiano, Flavio Siro, Pezzotti, Simone, Galimberti, Daria R., Gaigeot, Marie-Pierre, Bonn, Mischa, Backus, Ellen H. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1525
container_issue 5
container_start_page 1520
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Cyran, Jenée D.
Donovan, Michael A.
Vollmer, Doris
Brigiano, Flavio Siro
Pezzotti, Simone
Galimberti, Daria R.
Gaigeot, Marie-Pierre
Bonn, Mischa
Backus, Ellen H. G.
description Interfaces between water and silicates are ubiquitous and relevant for, among others, geochemistry, atmospheric chemistry, and chromatography. The molecular-level details of water organization at silica surfaces are important for a fundamental understanding of this interface. While silica is hydrophilic, weakly hydrogen-bonded OH groups have been identified at the surface of silica, characterized by a high O-H stretch vibrational frequency. Here, through a combination of experimental and theoretical surface-selective vibrational spectroscopy, we demonstrate that these OH groups originate from very weakly hydrogen-bonded water molecules at the nominally hydrophilic silica interface. The properties of these OH groups are very similar to those typically observed at hydrophobic surfaces. Molecular dynamics simulations illustrate that these weakly hydrogen-bonded water OH groups are pointing with their hydrogen atom toward local hydrophobic sites consisting of oxygen bridges of the silica. An increased density of these molecular hydrophobic sites, evident from an increase in weakly hydrogen-bonded water OH groups, correlates with an increased macroscopic contact angle.
doi_str_mv 10.1073/pnas.1819000116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26580280</jstor_id><sourcerecordid>26580280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-e36b27b413330fcb8ce7dace9d632ccbc166c3ff4966e5037b9edf3b280f8c853</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAkUiQsc0o7jj8QXpFUFtNKiXsrZciYO65U3DnZSaf97HG270J4seX7vefweIe8pXFCo2eU4mHRBG6oAgFL5gqwoKFpKruAlWQFUddnwip-RNyntMqNEA6_JGQMpBGNqRdY_g7c4exOL7aGLYdyG1qGbDoWZClPsDcaQMIwOjfeHR8Z5h0WaY2_QviWveuOTffdwnpNf37_dXV2Xm9sfN1frTYmCs6m0TLZV3XLKGIMe2wZt3WW56iSrEFukUiLre66ktAJY3Srb9aytGugbbAQ7J1-PvuPc7m2Hdpii8XqMbm_iQQfj9NPJ4Lb6d7jXkolG1jwbfDkabJ_JrtcbvdxBRSlwLu9pZj8_PBbDn9mmSe9dQuu9GWyYk65orTgIIWRGPz1Dd2GOQ45ioaRUStCFujxSS54p2v60AQW9VKmXKvW_KrPi4___PfGP3WXgwxHYpSnE07ySueOcGvsLP36klg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176699516</pqid></control><display><type>article</type><title>Molecular hydrophobicity at a macroscopically hydrophilic surface</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cyran, Jenée D. ; Donovan, Michael A. ; Vollmer, Doris ; Brigiano, Flavio Siro ; Pezzotti, Simone ; Galimberti, Daria R. ; Gaigeot, Marie-Pierre ; Bonn, Mischa ; Backus, Ellen H. G.</creator><creatorcontrib>Cyran, Jenée D. ; Donovan, Michael A. ; Vollmer, Doris ; Brigiano, Flavio Siro ; Pezzotti, Simone ; Galimberti, Daria R. ; Gaigeot, Marie-Pierre ; Bonn, Mischa ; Backus, Ellen H. G.</creatorcontrib><description>Interfaces between water and silicates are ubiquitous and relevant for, among others, geochemistry, atmospheric chemistry, and chromatography. The molecular-level details of water organization at silica surfaces are important for a fundamental understanding of this interface. While silica is hydrophilic, weakly hydrogen-bonded OH groups have been identified at the surface of silica, characterized by a high O-H stretch vibrational frequency. Here, through a combination of experimental and theoretical surface-selective vibrational spectroscopy, we demonstrate that these OH groups originate from very weakly hydrogen-bonded water molecules at the nominally hydrophilic silica interface. The properties of these OH groups are very similar to those typically observed at hydrophobic surfaces. Molecular dynamics simulations illustrate that these weakly hydrogen-bonded water OH groups are pointing with their hydrogen atom toward local hydrophobic sites consisting of oxygen bridges of the silica. An increased density of these molecular hydrophobic sites, evident from an increase in weakly hydrogen-bonded water OH groups, correlates with an increased macroscopic contact angle.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1819000116</identifier><identifier>PMID: 30655339</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atmospheric chemistry ; Bonding strength ; Chemical bonds ; Chemical Physics ; Chemical Sciences ; Contact angle ; Geochemistry ; Hydrogen ; Hydrogen bonding ; Hydrophilicity ; Hydrophobicity ; Interfaces ; Molecular dynamics ; or physical chemistry ; Organic chemistry ; Physical Sciences ; Physics ; Silica ; Silicates ; Silicon dioxide ; Spectroscopy ; Theoretical and ; Water chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (5), p.1520-1525</ispartof><rights>Volumes 1–89 and 106–116, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jan 29, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-e36b27b413330fcb8ce7dace9d632ccbc166c3ff4966e5037b9edf3b280f8c853</citedby><cites>FETCH-LOGICAL-c543t-e36b27b413330fcb8ce7dace9d632ccbc166c3ff4966e5037b9edf3b280f8c853</cites><orcidid>0000-0001-6851-8453 ; 0000-0002-5278-9854 ; 0000-0003-2857-3188 ; 0000-0003-2766-3325 ; 0000-0002-3409-5824 ; 0000-0003-2023-3648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26580280$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26580280$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30655339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02110446$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cyran, Jenée D.</creatorcontrib><creatorcontrib>Donovan, Michael A.</creatorcontrib><creatorcontrib>Vollmer, Doris</creatorcontrib><creatorcontrib>Brigiano, Flavio Siro</creatorcontrib><creatorcontrib>Pezzotti, Simone</creatorcontrib><creatorcontrib>Galimberti, Daria R.</creatorcontrib><creatorcontrib>Gaigeot, Marie-Pierre</creatorcontrib><creatorcontrib>Bonn, Mischa</creatorcontrib><creatorcontrib>Backus, Ellen H. G.</creatorcontrib><title>Molecular hydrophobicity at a macroscopically hydrophilic surface</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Interfaces between water and silicates are ubiquitous and relevant for, among others, geochemistry, atmospheric chemistry, and chromatography. The molecular-level details of water organization at silica surfaces are important for a fundamental understanding of this interface. While silica is hydrophilic, weakly hydrogen-bonded OH groups have been identified at the surface of silica, characterized by a high O-H stretch vibrational frequency. Here, through a combination of experimental and theoretical surface-selective vibrational spectroscopy, we demonstrate that these OH groups originate from very weakly hydrogen-bonded water molecules at the nominally hydrophilic silica interface. The properties of these OH groups are very similar to those typically observed at hydrophobic surfaces. Molecular dynamics simulations illustrate that these weakly hydrogen-bonded water OH groups are pointing with their hydrogen atom toward local hydrophobic sites consisting of oxygen bridges of the silica. An increased density of these molecular hydrophobic sites, evident from an increase in weakly hydrogen-bonded water OH groups, correlates with an increased macroscopic contact angle.</description><subject>Atmospheric chemistry</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Chemical Physics</subject><subject>Chemical Sciences</subject><subject>Contact angle</subject><subject>Geochemistry</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrophilicity</subject><subject>Hydrophobicity</subject><subject>Interfaces</subject><subject>Molecular dynamics</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Silica</subject><subject>Silicates</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Theoretical and</subject><subject>Water chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzAkUiQsc0o7jj8QXpFUFtNKiXsrZciYO65U3DnZSaf97HG270J4seX7vefweIe8pXFCo2eU4mHRBG6oAgFL5gqwoKFpKruAlWQFUddnwip-RNyntMqNEA6_JGQMpBGNqRdY_g7c4exOL7aGLYdyG1qGbDoWZClPsDcaQMIwOjfeHR8Z5h0WaY2_QviWveuOTffdwnpNf37_dXV2Xm9sfN1frTYmCs6m0TLZV3XLKGIMe2wZt3WW56iSrEFukUiLre66ktAJY3Srb9aytGugbbAQ7J1-PvuPc7m2Hdpii8XqMbm_iQQfj9NPJ4Lb6d7jXkolG1jwbfDkabJ_JrtcbvdxBRSlwLu9pZj8_PBbDn9mmSe9dQuu9GWyYk65orTgIIWRGPz1Dd2GOQ45ioaRUStCFujxSS54p2v60AQW9VKmXKvW_KrPi4___PfGP3WXgwxHYpSnE07ySueOcGvsLP36klg</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Cyran, Jenée D.</creator><creator>Donovan, Michael A.</creator><creator>Vollmer, Doris</creator><creator>Brigiano, Flavio Siro</creator><creator>Pezzotti, Simone</creator><creator>Galimberti, Daria R.</creator><creator>Gaigeot, Marie-Pierre</creator><creator>Bonn, Mischa</creator><creator>Backus, Ellen H. G.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6851-8453</orcidid><orcidid>https://orcid.org/0000-0002-5278-9854</orcidid><orcidid>https://orcid.org/0000-0003-2857-3188</orcidid><orcidid>https://orcid.org/0000-0003-2766-3325</orcidid><orcidid>https://orcid.org/0000-0002-3409-5824</orcidid><orcidid>https://orcid.org/0000-0003-2023-3648</orcidid></search><sort><creationdate>20190129</creationdate><title>Molecular hydrophobicity at a macroscopically hydrophilic surface</title><author>Cyran, Jenée D. ; Donovan, Michael A. ; Vollmer, Doris ; Brigiano, Flavio Siro ; Pezzotti, Simone ; Galimberti, Daria R. ; Gaigeot, Marie-Pierre ; Bonn, Mischa ; Backus, Ellen H. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-e36b27b413330fcb8ce7dace9d632ccbc166c3ff4966e5037b9edf3b280f8c853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric chemistry</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Chemical Physics</topic><topic>Chemical Sciences</topic><topic>Contact angle</topic><topic>Geochemistry</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrophilicity</topic><topic>Hydrophobicity</topic><topic>Interfaces</topic><topic>Molecular dynamics</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Silica</topic><topic>Silicates</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Theoretical and</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cyran, Jenée D.</creatorcontrib><creatorcontrib>Donovan, Michael A.</creatorcontrib><creatorcontrib>Vollmer, Doris</creatorcontrib><creatorcontrib>Brigiano, Flavio Siro</creatorcontrib><creatorcontrib>Pezzotti, Simone</creatorcontrib><creatorcontrib>Galimberti, Daria R.</creatorcontrib><creatorcontrib>Gaigeot, Marie-Pierre</creatorcontrib><creatorcontrib>Bonn, Mischa</creatorcontrib><creatorcontrib>Backus, Ellen H. G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cyran, Jenée D.</au><au>Donovan, Michael A.</au><au>Vollmer, Doris</au><au>Brigiano, Flavio Siro</au><au>Pezzotti, Simone</au><au>Galimberti, Daria R.</au><au>Gaigeot, Marie-Pierre</au><au>Bonn, Mischa</au><au>Backus, Ellen H. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular hydrophobicity at a macroscopically hydrophilic surface</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-01-29</date><risdate>2019</risdate><volume>116</volume><issue>5</issue><spage>1520</spage><epage>1525</epage><pages>1520-1525</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Interfaces between water and silicates are ubiquitous and relevant for, among others, geochemistry, atmospheric chemistry, and chromatography. The molecular-level details of water organization at silica surfaces are important for a fundamental understanding of this interface. While silica is hydrophilic, weakly hydrogen-bonded OH groups have been identified at the surface of silica, characterized by a high O-H stretch vibrational frequency. Here, through a combination of experimental and theoretical surface-selective vibrational spectroscopy, we demonstrate that these OH groups originate from very weakly hydrogen-bonded water molecules at the nominally hydrophilic silica interface. The properties of these OH groups are very similar to those typically observed at hydrophobic surfaces. Molecular dynamics simulations illustrate that these weakly hydrogen-bonded water OH groups are pointing with their hydrogen atom toward local hydrophobic sites consisting of oxygen bridges of the silica. An increased density of these molecular hydrophobic sites, evident from an increase in weakly hydrogen-bonded water OH groups, correlates with an increased macroscopic contact angle.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30655339</pmid><doi>10.1073/pnas.1819000116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6851-8453</orcidid><orcidid>https://orcid.org/0000-0002-5278-9854</orcidid><orcidid>https://orcid.org/0000-0003-2857-3188</orcidid><orcidid>https://orcid.org/0000-0003-2766-3325</orcidid><orcidid>https://orcid.org/0000-0002-3409-5824</orcidid><orcidid>https://orcid.org/0000-0003-2023-3648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (5), p.1520-1525
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358674
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atmospheric chemistry
Bonding strength
Chemical bonds
Chemical Physics
Chemical Sciences
Contact angle
Geochemistry
Hydrogen
Hydrogen bonding
Hydrophilicity
Hydrophobicity
Interfaces
Molecular dynamics
or physical chemistry
Organic chemistry
Physical Sciences
Physics
Silica
Silicates
Silicon dioxide
Spectroscopy
Theoretical and
Water chemistry
title Molecular hydrophobicity at a macroscopically hydrophilic surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20hydrophobicity%20at%20a%20macroscopically%20hydrophilic%20surface&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cyran,%20Jen%C3%A9e%20D.&rft.date=2019-01-29&rft.volume=116&rft.issue=5&rft.spage=1520&rft.epage=1525&rft.pages=1520-1525&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1819000116&rft_dat=%3Cjstor_pubme%3E26580280%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176699516&rft_id=info:pmid/30655339&rft_jstor_id=26580280&rfr_iscdi=true