A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine
A common design principle of heteromeric signaling proteins is the use of shared subunits. This allows encoding of complex messages while maintaining evolutionary flexibility. How cells regulate and control assembly of such composite signaling proteins remains an important open question. An example...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-01, Vol.116 (5), p.1585-1590 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1590 |
---|---|
container_issue | 5 |
container_start_page | 1585 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Müller, Stephanie I. Friedl, Antonie Aschenbrenner, Isabel Esser-von Bieren, Julia Zacharias, Martin Devergne, Odile Feige, Matthias J. |
description | A common design principle of heteromeric signaling proteins is the use of shared subunits. This allows encoding of complex messages while maintaining evolutionary flexibility. How cells regulate and control assembly of such composite signaling proteins remains an important open question. An example of particular complexity and biological relevance is the interleukin 12 (IL-12) family. Four functionally distinct αβ heterodimers are assembled from only five subunits to regulate immune cell function and development. In addition, some subunits act as independent signaling molecules. Here we unveil key molecular mechanisms governing IL-27 biogenesis, an IL-12 family member that limits infections and autoimmunity. In mice, the IL-27α subunit is secreted as a cytokine, whereas in humans only heterodimeric IL-27 is present. Surprisingly, we find that differences in a single amino acid determine if IL-27α can be secreted autonomously, acting as a signaling molecule, or if it depends on heterodimerization for secretion. By combining computer simulations with biochemical experiments, we dissect the underlying structural determinants: a protein folding switch coupled to disulfide bond formation regulates chaperone-mediated retention versus secretion. Using these insights, we rationally change folding and assembly control for this protein. This provides the basis for a more human-like IL-27 system in mice and establishes a secretion-competent human IL-27α that signals on its own and can regulate immune cell function. Taken together, our data reveal a close link between protein folding and immunoregulation. Insights into the underlying mechanisms can be used to engineer immune modulators. |
doi_str_mv | 10.1073/pnas.1816698116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26580290</jstor_id><sourcerecordid>26580290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-29d7a56a637fec66021ba79f2051e81248eeb43d3fed4e411660a4d5b171377c3</originalsourceid><addsrcrecordid>eNpdks1uEzEUhS0EoqGwZgWyxAYW0_pv_LOpFFVAkSKxgbXlmbmTOEzsYHuK-li8CM-Eo5QAXVny_c7xvfcYoZeUXFCi-OU-uHxBNZXSaErlI7SgxNBGCkMeowUhTDVaMHGGnuW8JYSYVpOn6IwT2VJOyQJ1SzzGafBhjfMPX_oNTrCeJ1cgYx8KpAnmbz5gpnDn4xoCZJ-xCwPO0CcoPgYcR-xLxr9-Nnnu5uALdhXB_V2JVQrP0ZPRTRle3J_n6OuH91-ub5rV54-frperphdKlYaZQblWOsnVCL2UhNHOKTMy0lLQlAkN0Ak-8BEGAaJOK4kTQ9tRRblSPT9HV0ff_dztYOghlOQmu09-59Kdjc7b_yvBb-w63lrJWy2lrgbvjgabB7Kb5coe7gg3Rggmb2ll394_luL3GXKxO597mCYXIM7ZMqoMN3XPrKJvHqDbOKdQV3GgpCKMa1GpyyPVp5hzgvHUASX2kLU9ZG3_Zl0Vr_-d98T_CbcCr47ANpeYTnUm6ydghvDfPOKvOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176702384</pqid></control><display><type>article</type><title>A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Müller, Stephanie I. ; Friedl, Antonie ; Aschenbrenner, Isabel ; Esser-von Bieren, Julia ; Zacharias, Martin ; Devergne, Odile ; Feige, Matthias J.</creator><creatorcontrib>Müller, Stephanie I. ; Friedl, Antonie ; Aschenbrenner, Isabel ; Esser-von Bieren, Julia ; Zacharias, Martin ; Devergne, Odile ; Feige, Matthias J.</creatorcontrib><description>A common design principle of heteromeric signaling proteins is the use of shared subunits. This allows encoding of complex messages while maintaining evolutionary flexibility. How cells regulate and control assembly of such composite signaling proteins remains an important open question. An example of particular complexity and biological relevance is the interleukin 12 (IL-12) family. Four functionally distinct αβ heterodimers are assembled from only five subunits to regulate immune cell function and development. In addition, some subunits act as independent signaling molecules. Here we unveil key molecular mechanisms governing IL-27 biogenesis, an IL-12 family member that limits infections and autoimmunity. In mice, the IL-27α subunit is secreted as a cytokine, whereas in humans only heterodimeric IL-27 is present. Surprisingly, we find that differences in a single amino acid determine if IL-27α can be secreted autonomously, acting as a signaling molecule, or if it depends on heterodimerization for secretion. By combining computer simulations with biochemical experiments, we dissect the underlying structural determinants: a protein folding switch coupled to disulfide bond formation regulates chaperone-mediated retention versus secretion. Using these insights, we rationally change folding and assembly control for this protein. This provides the basis for a more human-like IL-27 system in mice and establishes a secretion-competent human IL-27α that signals on its own and can regulate immune cell function. Taken together, our data reveal a close link between protein folding and immunoregulation. Insights into the underlying mechanisms can be used to engineer immune modulators.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1816698116</identifier><identifier>PMID: 30651310</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Animals ; Assembly ; Autoimmunity ; Autoimmunity - immunology ; Biological Sciences ; Biosynthesis ; Cell Line ; Complexity ; Computer simulation ; Cytokines ; Cytokines - metabolism ; Folding ; HEK293 Cells ; Humans ; Immune system ; Immunology ; Immunomodulation ; Immunoregulation ; Interleukin 12 ; Interleukin 27 ; Interleukins - metabolism ; Life Sciences ; Mathematical models ; Mice ; Modulators ; Molecular modelling ; Protein Folding ; Protein Subunits - metabolism ; Proteins ; Signal Transduction - physiology ; Signaling</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (5), p.1585-1590</ispartof><rights>Volumes 1–89 and 106–116, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 29, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-29d7a56a637fec66021ba79f2051e81248eeb43d3fed4e411660a4d5b171377c3</citedby><cites>FETCH-LOGICAL-c477t-29d7a56a637fec66021ba79f2051e81248eeb43d3fed4e411660a4d5b171377c3</cites><orcidid>0000-0001-5163-2663 ; 0000-0002-2838-7564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26580290$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26580290$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30651310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03994426$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Stephanie I.</creatorcontrib><creatorcontrib>Friedl, Antonie</creatorcontrib><creatorcontrib>Aschenbrenner, Isabel</creatorcontrib><creatorcontrib>Esser-von Bieren, Julia</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><creatorcontrib>Devergne, Odile</creatorcontrib><creatorcontrib>Feige, Matthias J.</creatorcontrib><title>A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A common design principle of heteromeric signaling proteins is the use of shared subunits. This allows encoding of complex messages while maintaining evolutionary flexibility. How cells regulate and control assembly of such composite signaling proteins remains an important open question. An example of particular complexity and biological relevance is the interleukin 12 (IL-12) family. Four functionally distinct αβ heterodimers are assembled from only five subunits to regulate immune cell function and development. In addition, some subunits act as independent signaling molecules. Here we unveil key molecular mechanisms governing IL-27 biogenesis, an IL-12 family member that limits infections and autoimmunity. In mice, the IL-27α subunit is secreted as a cytokine, whereas in humans only heterodimeric IL-27 is present. Surprisingly, we find that differences in a single amino acid determine if IL-27α can be secreted autonomously, acting as a signaling molecule, or if it depends on heterodimerization for secretion. By combining computer simulations with biochemical experiments, we dissect the underlying structural determinants: a protein folding switch coupled to disulfide bond formation regulates chaperone-mediated retention versus secretion. Using these insights, we rationally change folding and assembly control for this protein. This provides the basis for a more human-like IL-27 system in mice and establishes a secretion-competent human IL-27α that signals on its own and can regulate immune cell function. Taken together, our data reveal a close link between protein folding and immunoregulation. Insights into the underlying mechanisms can be used to engineer immune modulators.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Assembly</subject><subject>Autoimmunity</subject><subject>Autoimmunity - immunology</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell Line</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Folding</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunology</subject><subject>Immunomodulation</subject><subject>Immunoregulation</subject><subject>Interleukin 12</subject><subject>Interleukin 27</subject><subject>Interleukins - metabolism</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Mice</subject><subject>Modulators</subject><subject>Molecular modelling</subject><subject>Protein Folding</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>Signal Transduction - physiology</subject><subject>Signaling</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdks1uEzEUhS0EoqGwZgWyxAYW0_pv_LOpFFVAkSKxgbXlmbmTOEzsYHuK-li8CM-Eo5QAXVny_c7xvfcYoZeUXFCi-OU-uHxBNZXSaErlI7SgxNBGCkMeowUhTDVaMHGGnuW8JYSYVpOn6IwT2VJOyQJ1SzzGafBhjfMPX_oNTrCeJ1cgYx8KpAnmbz5gpnDn4xoCZJ-xCwPO0CcoPgYcR-xLxr9-Nnnu5uALdhXB_V2JVQrP0ZPRTRle3J_n6OuH91-ub5rV54-frperphdKlYaZQblWOsnVCL2UhNHOKTMy0lLQlAkN0Ak-8BEGAaJOK4kTQ9tRRblSPT9HV0ff_dztYOghlOQmu09-59Kdjc7b_yvBb-w63lrJWy2lrgbvjgabB7Kb5coe7gg3Rggmb2ll394_luL3GXKxO597mCYXIM7ZMqoMN3XPrKJvHqDbOKdQV3GgpCKMa1GpyyPVp5hzgvHUASX2kLU9ZG3_Zl0Vr_-d98T_CbcCr47ANpeYTnUm6ydghvDfPOKvOg</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Müller, Stephanie I.</creator><creator>Friedl, Antonie</creator><creator>Aschenbrenner, Isabel</creator><creator>Esser-von Bieren, Julia</creator><creator>Zacharias, Martin</creator><creator>Devergne, Odile</creator><creator>Feige, Matthias J.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5163-2663</orcidid><orcidid>https://orcid.org/0000-0002-2838-7564</orcidid></search><sort><creationdate>20190129</creationdate><title>A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine</title><author>Müller, Stephanie I. ; Friedl, Antonie ; Aschenbrenner, Isabel ; Esser-von Bieren, Julia ; Zacharias, Martin ; Devergne, Odile ; Feige, Matthias J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-29d7a56a637fec66021ba79f2051e81248eeb43d3fed4e411660a4d5b171377c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Assembly</topic><topic>Autoimmunity</topic><topic>Autoimmunity - immunology</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell Line</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Folding</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunology</topic><topic>Immunomodulation</topic><topic>Immunoregulation</topic><topic>Interleukin 12</topic><topic>Interleukin 27</topic><topic>Interleukins - metabolism</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Mice</topic><topic>Modulators</topic><topic>Molecular modelling</topic><topic>Protein Folding</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>Signal Transduction - physiology</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Stephanie I.</creatorcontrib><creatorcontrib>Friedl, Antonie</creatorcontrib><creatorcontrib>Aschenbrenner, Isabel</creatorcontrib><creatorcontrib>Esser-von Bieren, Julia</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><creatorcontrib>Devergne, Odile</creatorcontrib><creatorcontrib>Feige, Matthias J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Stephanie I.</au><au>Friedl, Antonie</au><au>Aschenbrenner, Isabel</au><au>Esser-von Bieren, Julia</au><au>Zacharias, Martin</au><au>Devergne, Odile</au><au>Feige, Matthias J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-01-29</date><risdate>2019</risdate><volume>116</volume><issue>5</issue><spage>1585</spage><epage>1590</epage><pages>1585-1590</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A common design principle of heteromeric signaling proteins is the use of shared subunits. This allows encoding of complex messages while maintaining evolutionary flexibility. How cells regulate and control assembly of such composite signaling proteins remains an important open question. An example of particular complexity and biological relevance is the interleukin 12 (IL-12) family. Four functionally distinct αβ heterodimers are assembled from only five subunits to regulate immune cell function and development. In addition, some subunits act as independent signaling molecules. Here we unveil key molecular mechanisms governing IL-27 biogenesis, an IL-12 family member that limits infections and autoimmunity. In mice, the IL-27α subunit is secreted as a cytokine, whereas in humans only heterodimeric IL-27 is present. Surprisingly, we find that differences in a single amino acid determine if IL-27α can be secreted autonomously, acting as a signaling molecule, or if it depends on heterodimerization for secretion. By combining computer simulations with biochemical experiments, we dissect the underlying structural determinants: a protein folding switch coupled to disulfide bond formation regulates chaperone-mediated retention versus secretion. Using these insights, we rationally change folding and assembly control for this protein. This provides the basis for a more human-like IL-27 system in mice and establishes a secretion-competent human IL-27α that signals on its own and can regulate immune cell function. Taken together, our data reveal a close link between protein folding and immunoregulation. Insights into the underlying mechanisms can be used to engineer immune modulators.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30651310</pmid><doi>10.1073/pnas.1816698116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5163-2663</orcidid><orcidid>https://orcid.org/0000-0002-2838-7564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (5), p.1585-1590 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358668 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino acids Animals Assembly Autoimmunity Autoimmunity - immunology Biological Sciences Biosynthesis Cell Line Complexity Computer simulation Cytokines Cytokines - metabolism Folding HEK293 Cells Humans Immune system Immunology Immunomodulation Immunoregulation Interleukin 12 Interleukin 27 Interleukins - metabolism Life Sciences Mathematical models Mice Modulators Molecular modelling Protein Folding Protein Subunits - metabolism Proteins Signal Transduction - physiology Signaling |
title | A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20folding%20switch%20regulates%20interleukin%2027%20biogenesis%20and%20secretion%20of%20its%20%CE%B1-subunit%20as%20a%20cytokine&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=M%C3%BCller,%20Stephanie%20I.&rft.date=2019-01-29&rft.volume=116&rft.issue=5&rft.spage=1585&rft.epage=1590&rft.pages=1585-1590&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1816698116&rft_dat=%3Cjstor_pubme%3E26580290%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176702384&rft_id=info:pmid/30651310&rft_jstor_id=26580290&rfr_iscdi=true |