Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus

The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-01, Vol.116 (5), p.1745-1754
Hauptverfasser: Copin, Richard, Sause, William E, Fulmer, Yi, Balasubramanian, Divya, Dyzenhaus, Sophie, Ahmed, Jamil M, Kumar, Krishan, Lees, John, Stachel, Anna, Fisher, Jason C, Drlica, Karl, Phillips, Michael, Weiser, Jeffrey N, Planet, Paul J, Uhlemann, Anne-Catrin, Altman, Deena R, Sebra, Robert, van Bakel, Harm, Lighter, Jennifer, Torres, Victor J, Shopsin, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1754
container_issue 5
container_start_page 1745
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Copin, Richard
Sause, William E
Fulmer, Yi
Balasubramanian, Divya
Dyzenhaus, Sophie
Ahmed, Jamil M
Kumar, Krishan
Lees, John
Stachel, Anna
Fisher, Jason C
Drlica, Karl
Phillips, Michael
Weiser, Jeffrey N
Planet, Paul J
Uhlemann, Anne-Catrin
Altman, Deena R
Sebra, Robert
van Bakel, Harm
Lighter, Jennifer
Torres, Victor J
Shopsin, Bo
description The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of ( ) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and ( ) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non- spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.
doi_str_mv 10.1073/pnas.1814265116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176700690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-500a5911e741e865a07872470639d1cb2b2fbcd6bcd263921d946f0937cb9bed3</originalsourceid><addsrcrecordid>eNpdUUtv3CAYRFWjZpv23FuF1EsvTj4wxvalUhX1JUXKIekZYcBZIgwOj5X2F_Rvl20ebXNACJiZj5lB6B2BUwJ9e7Z6mU7JQBjlHSH8BdoQGEnD2Qgv0QaA9s3AKDtGr1O6BYCxG-AVOm6Btx0jfIN-XZm7Yny20mGzC65kGzwOM97ZWJzxymDpNY4m2ZTl4ahLtP4GKxd85aQ1GqkPBBWWpXib941Ud8VGo_Fi8tYq65z1zaNCxldZrtu9CyooVRKWJZqS3qCjWbpk3j7sJ-jn1y_X59-bi8tvP84_XzSKUZKbDkB2IyGmZ8QMvJPQDz1lffUzaqImOtF5UprXResVJXpkfIax7dU0Tka3J-jTve5apsVoVa1H6cQa7SLjXgRpxf8v3m7FTdiJGtjAOa8CHx8EYqjJpSwWm5RxTnoTShKU9HVaOwCp0A_PoLehxJraHxTvAfgIFXV2j1IxpBTN_PQZAuJQsjiULP6WXBnv__XwhH9stf0Naxenlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176700690</pqid></control><display><type>article</type><title>Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Copin, Richard ; Sause, William E ; Fulmer, Yi ; Balasubramanian, Divya ; Dyzenhaus, Sophie ; Ahmed, Jamil M ; Kumar, Krishan ; Lees, John ; Stachel, Anna ; Fisher, Jason C ; Drlica, Karl ; Phillips, Michael ; Weiser, Jeffrey N ; Planet, Paul J ; Uhlemann, Anne-Catrin ; Altman, Deena R ; Sebra, Robert ; van Bakel, Harm ; Lighter, Jennifer ; Torres, Victor J ; Shopsin, Bo</creator><creatorcontrib>Copin, Richard ; Sause, William E ; Fulmer, Yi ; Balasubramanian, Divya ; Dyzenhaus, Sophie ; Ahmed, Jamil M ; Kumar, Krishan ; Lees, John ; Stachel, Anna ; Fisher, Jason C ; Drlica, Karl ; Phillips, Michael ; Weiser, Jeffrey N ; Planet, Paul J ; Uhlemann, Anne-Catrin ; Altman, Deena R ; Sebra, Robert ; van Bakel, Harm ; Lighter, Jennifer ; Torres, Victor J ; Shopsin, Bo</creatorcontrib><description>The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of ( ) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and ( ) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non- spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1814265116</identifier><identifier>PMID: 30635416</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Antiinfectives and antibacterials ; Antimicrobial agents ; Antimicrobial resistance ; Biological evolution ; Biological Sciences ; Child ; Chlorhexidine ; Chlorhexidine - pharmacology ; Cloning ; Colonization ; Communities ; Community-Acquired Infections - drug therapy ; Community-Acquired Infections - microbiology ; Decolonization ; Deoxyribonucleic acid ; DNA ; Drug resistance ; Epidemics ; Evolution ; Fitness ; Genetic analysis ; Genome, Bacterial - genetics ; Genomics ; Health risks ; Humans ; Infections ; Methicillin ; Methicillin-Resistant Staphylococcus aureus - drug effects ; Methicillin-Resistant Staphylococcus aureus - genetics ; Mice ; Microbial Sensitivity Tests - methods ; Mupirocin ; Mupirocin - pharmacology ; Mutation ; Pathogens ; Phages ; Phylogeny ; Plasmids ; Plasmids - genetics ; PNAS Plus ; Priming ; Reproductive fitness ; Staphylococcal Infections - drug therapy ; Staphylococcal Infections - microbiology ; Staphylococcus aureus ; Staphylococcus infections ; Virulence ; Virulence - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (5), p.1745-1754</ispartof><rights>Copyright National Academy of Sciences Jan 29, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-500a5911e741e865a07872470639d1cb2b2fbcd6bcd263921d946f0937cb9bed3</citedby><cites>FETCH-LOGICAL-c421t-500a5911e741e865a07872470639d1cb2b2fbcd6bcd263921d946f0937cb9bed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358666/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358666/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30635416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Copin, Richard</creatorcontrib><creatorcontrib>Sause, William E</creatorcontrib><creatorcontrib>Fulmer, Yi</creatorcontrib><creatorcontrib>Balasubramanian, Divya</creatorcontrib><creatorcontrib>Dyzenhaus, Sophie</creatorcontrib><creatorcontrib>Ahmed, Jamil M</creatorcontrib><creatorcontrib>Kumar, Krishan</creatorcontrib><creatorcontrib>Lees, John</creatorcontrib><creatorcontrib>Stachel, Anna</creatorcontrib><creatorcontrib>Fisher, Jason C</creatorcontrib><creatorcontrib>Drlica, Karl</creatorcontrib><creatorcontrib>Phillips, Michael</creatorcontrib><creatorcontrib>Weiser, Jeffrey N</creatorcontrib><creatorcontrib>Planet, Paul J</creatorcontrib><creatorcontrib>Uhlemann, Anne-Catrin</creatorcontrib><creatorcontrib>Altman, Deena R</creatorcontrib><creatorcontrib>Sebra, Robert</creatorcontrib><creatorcontrib>van Bakel, Harm</creatorcontrib><creatorcontrib>Lighter, Jennifer</creatorcontrib><creatorcontrib>Torres, Victor J</creatorcontrib><creatorcontrib>Shopsin, Bo</creatorcontrib><title>Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of ( ) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and ( ) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non- spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial resistance</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>Child</subject><subject>Chlorhexidine</subject><subject>Chlorhexidine - pharmacology</subject><subject>Cloning</subject><subject>Colonization</subject><subject>Communities</subject><subject>Community-Acquired Infections - drug therapy</subject><subject>Community-Acquired Infections - microbiology</subject><subject>Decolonization</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug resistance</subject><subject>Epidemics</subject><subject>Evolution</subject><subject>Fitness</subject><subject>Genetic analysis</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomics</subject><subject>Health risks</subject><subject>Humans</subject><subject>Infections</subject><subject>Methicillin</subject><subject>Methicillin-Resistant Staphylococcus aureus - drug effects</subject><subject>Methicillin-Resistant Staphylococcus aureus - genetics</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests - methods</subject><subject>Mupirocin</subject><subject>Mupirocin - pharmacology</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>Phages</subject><subject>Phylogeny</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>PNAS Plus</subject><subject>Priming</subject><subject>Reproductive fitness</subject><subject>Staphylococcal Infections - drug therapy</subject><subject>Staphylococcal Infections - microbiology</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus infections</subject><subject>Virulence</subject><subject>Virulence - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUUtv3CAYRFWjZpv23FuF1EsvTj4wxvalUhX1JUXKIekZYcBZIgwOj5X2F_Rvl20ebXNACJiZj5lB6B2BUwJ9e7Z6mU7JQBjlHSH8BdoQGEnD2Qgv0QaA9s3AKDtGr1O6BYCxG-AVOm6Btx0jfIN-XZm7Yny20mGzC65kGzwOM97ZWJzxymDpNY4m2ZTl4ahLtP4GKxd85aQ1GqkPBBWWpXib941Ud8VGo_Fi8tYq65z1zaNCxldZrtu9CyooVRKWJZqS3qCjWbpk3j7sJ-jn1y_X59-bi8tvP84_XzSKUZKbDkB2IyGmZ8QMvJPQDz1lffUzaqImOtF5UprXResVJXpkfIax7dU0Tka3J-jTve5apsVoVa1H6cQa7SLjXgRpxf8v3m7FTdiJGtjAOa8CHx8EYqjJpSwWm5RxTnoTShKU9HVaOwCp0A_PoLehxJraHxTvAfgIFXV2j1IxpBTN_PQZAuJQsjiULP6WXBnv__XwhH9stf0Naxenlg</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Copin, Richard</creator><creator>Sause, William E</creator><creator>Fulmer, Yi</creator><creator>Balasubramanian, Divya</creator><creator>Dyzenhaus, Sophie</creator><creator>Ahmed, Jamil M</creator><creator>Kumar, Krishan</creator><creator>Lees, John</creator><creator>Stachel, Anna</creator><creator>Fisher, Jason C</creator><creator>Drlica, Karl</creator><creator>Phillips, Michael</creator><creator>Weiser, Jeffrey N</creator><creator>Planet, Paul J</creator><creator>Uhlemann, Anne-Catrin</creator><creator>Altman, Deena R</creator><creator>Sebra, Robert</creator><creator>van Bakel, Harm</creator><creator>Lighter, Jennifer</creator><creator>Torres, Victor J</creator><creator>Shopsin, Bo</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190129</creationdate><title>Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus</title><author>Copin, Richard ; Sause, William E ; Fulmer, Yi ; Balasubramanian, Divya ; Dyzenhaus, Sophie ; Ahmed, Jamil M ; Kumar, Krishan ; Lees, John ; Stachel, Anna ; Fisher, Jason C ; Drlica, Karl ; Phillips, Michael ; Weiser, Jeffrey N ; Planet, Paul J ; Uhlemann, Anne-Catrin ; Altman, Deena R ; Sebra, Robert ; van Bakel, Harm ; Lighter, Jennifer ; Torres, Victor J ; Shopsin, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-500a5911e741e865a07872470639d1cb2b2fbcd6bcd263921d946f0937cb9bed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial resistance</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>Child</topic><topic>Chlorhexidine</topic><topic>Chlorhexidine - pharmacology</topic><topic>Cloning</topic><topic>Colonization</topic><topic>Communities</topic><topic>Community-Acquired Infections - drug therapy</topic><topic>Community-Acquired Infections - microbiology</topic><topic>Decolonization</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug resistance</topic><topic>Epidemics</topic><topic>Evolution</topic><topic>Fitness</topic><topic>Genetic analysis</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomics</topic><topic>Health risks</topic><topic>Humans</topic><topic>Infections</topic><topic>Methicillin</topic><topic>Methicillin-Resistant Staphylococcus aureus - drug effects</topic><topic>Methicillin-Resistant Staphylococcus aureus - genetics</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests - methods</topic><topic>Mupirocin</topic><topic>Mupirocin - pharmacology</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>Phages</topic><topic>Phylogeny</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>PNAS Plus</topic><topic>Priming</topic><topic>Reproductive fitness</topic><topic>Staphylococcal Infections - drug therapy</topic><topic>Staphylococcal Infections - microbiology</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus infections</topic><topic>Virulence</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Copin, Richard</creatorcontrib><creatorcontrib>Sause, William E</creatorcontrib><creatorcontrib>Fulmer, Yi</creatorcontrib><creatorcontrib>Balasubramanian, Divya</creatorcontrib><creatorcontrib>Dyzenhaus, Sophie</creatorcontrib><creatorcontrib>Ahmed, Jamil M</creatorcontrib><creatorcontrib>Kumar, Krishan</creatorcontrib><creatorcontrib>Lees, John</creatorcontrib><creatorcontrib>Stachel, Anna</creatorcontrib><creatorcontrib>Fisher, Jason C</creatorcontrib><creatorcontrib>Drlica, Karl</creatorcontrib><creatorcontrib>Phillips, Michael</creatorcontrib><creatorcontrib>Weiser, Jeffrey N</creatorcontrib><creatorcontrib>Planet, Paul J</creatorcontrib><creatorcontrib>Uhlemann, Anne-Catrin</creatorcontrib><creatorcontrib>Altman, Deena R</creatorcontrib><creatorcontrib>Sebra, Robert</creatorcontrib><creatorcontrib>van Bakel, Harm</creatorcontrib><creatorcontrib>Lighter, Jennifer</creatorcontrib><creatorcontrib>Torres, Victor J</creatorcontrib><creatorcontrib>Shopsin, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Copin, Richard</au><au>Sause, William E</au><au>Fulmer, Yi</au><au>Balasubramanian, Divya</au><au>Dyzenhaus, Sophie</au><au>Ahmed, Jamil M</au><au>Kumar, Krishan</au><au>Lees, John</au><au>Stachel, Anna</au><au>Fisher, Jason C</au><au>Drlica, Karl</au><au>Phillips, Michael</au><au>Weiser, Jeffrey N</au><au>Planet, Paul J</au><au>Uhlemann, Anne-Catrin</au><au>Altman, Deena R</au><au>Sebra, Robert</au><au>van Bakel, Harm</au><au>Lighter, Jennifer</au><au>Torres, Victor J</au><au>Shopsin, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-01-29</date><risdate>2019</risdate><volume>116</volume><issue>5</issue><spage>1745</spage><epage>1754</epage><pages>1745-1754</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of ( ) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and ( ) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non- spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30635416</pmid><doi>10.1073/pnas.1814265116</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (5), p.1745-1754
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358666
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Anti-Bacterial Agents - pharmacology
Antiinfectives and antibacterials
Antimicrobial agents
Antimicrobial resistance
Biological evolution
Biological Sciences
Child
Chlorhexidine
Chlorhexidine - pharmacology
Cloning
Colonization
Communities
Community-Acquired Infections - drug therapy
Community-Acquired Infections - microbiology
Decolonization
Deoxyribonucleic acid
DNA
Drug resistance
Epidemics
Evolution
Fitness
Genetic analysis
Genome, Bacterial - genetics
Genomics
Health risks
Humans
Infections
Methicillin
Methicillin-Resistant Staphylococcus aureus - drug effects
Methicillin-Resistant Staphylococcus aureus - genetics
Mice
Microbial Sensitivity Tests - methods
Mupirocin
Mupirocin - pharmacology
Mutation
Pathogens
Phages
Phylogeny
Plasmids
Plasmids - genetics
PNAS Plus
Priming
Reproductive fitness
Staphylococcal Infections - drug therapy
Staphylococcal Infections - microbiology
Staphylococcus aureus
Staphylococcus infections
Virulence
Virulence - genetics
title Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20evolution%20of%20virulence%20and%20resistance%20during%20clonal%20spread%20of%20community-acquired%20methicillin-resistant%20Staphylococcus%20aureus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Copin,%20Richard&rft.date=2019-01-29&rft.volume=116&rft.issue=5&rft.spage=1745&rft.epage=1754&rft.pages=1745-1754&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1814265116&rft_dat=%3Cproquest_pubme%3E2176700690%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176700690&rft_id=info:pmid/30635416&rfr_iscdi=true