Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus
The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-01, Vol.116 (5), p.1745-1754 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1754 |
---|---|
container_issue | 5 |
container_start_page | 1745 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Copin, Richard Sause, William E Fulmer, Yi Balasubramanian, Divya Dyzenhaus, Sophie Ahmed, Jamil M Kumar, Krishan Lees, John Stachel, Anna Fisher, Jason C Drlica, Karl Phillips, Michael Weiser, Jeffrey N Planet, Paul J Uhlemann, Anne-Catrin Altman, Deena R Sebra, Robert van Bakel, Harm Lighter, Jennifer Torres, Victor J Shopsin, Bo |
description | The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant
(CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (
) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (
) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-
spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements. |
doi_str_mv | 10.1073/pnas.1814265116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176700690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-500a5911e741e865a07872470639d1cb2b2fbcd6bcd263921d946f0937cb9bed3</originalsourceid><addsrcrecordid>eNpdUUtv3CAYRFWjZpv23FuF1EsvTj4wxvalUhX1JUXKIekZYcBZIgwOj5X2F_Rvl20ebXNACJiZj5lB6B2BUwJ9e7Z6mU7JQBjlHSH8BdoQGEnD2Qgv0QaA9s3AKDtGr1O6BYCxG-AVOm6Btx0jfIN-XZm7Yny20mGzC65kGzwOM97ZWJzxymDpNY4m2ZTl4ahLtP4GKxd85aQ1GqkPBBWWpXib941Ud8VGo_Fi8tYq65z1zaNCxldZrtu9CyooVRKWJZqS3qCjWbpk3j7sJ-jn1y_X59-bi8tvP84_XzSKUZKbDkB2IyGmZ8QMvJPQDz1lffUzaqImOtF5UprXResVJXpkfIax7dU0Tka3J-jTve5apsVoVa1H6cQa7SLjXgRpxf8v3m7FTdiJGtjAOa8CHx8EYqjJpSwWm5RxTnoTShKU9HVaOwCp0A_PoLehxJraHxTvAfgIFXV2j1IxpBTN_PQZAuJQsjiULP6WXBnv__XwhH9stf0Naxenlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176700690</pqid></control><display><type>article</type><title>Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Copin, Richard ; Sause, William E ; Fulmer, Yi ; Balasubramanian, Divya ; Dyzenhaus, Sophie ; Ahmed, Jamil M ; Kumar, Krishan ; Lees, John ; Stachel, Anna ; Fisher, Jason C ; Drlica, Karl ; Phillips, Michael ; Weiser, Jeffrey N ; Planet, Paul J ; Uhlemann, Anne-Catrin ; Altman, Deena R ; Sebra, Robert ; van Bakel, Harm ; Lighter, Jennifer ; Torres, Victor J ; Shopsin, Bo</creator><creatorcontrib>Copin, Richard ; Sause, William E ; Fulmer, Yi ; Balasubramanian, Divya ; Dyzenhaus, Sophie ; Ahmed, Jamil M ; Kumar, Krishan ; Lees, John ; Stachel, Anna ; Fisher, Jason C ; Drlica, Karl ; Phillips, Michael ; Weiser, Jeffrey N ; Planet, Paul J ; Uhlemann, Anne-Catrin ; Altman, Deena R ; Sebra, Robert ; van Bakel, Harm ; Lighter, Jennifer ; Torres, Victor J ; Shopsin, Bo</creatorcontrib><description>The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant
(CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (
) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (
) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-
spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1814265116</identifier><identifier>PMID: 30635416</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Antiinfectives and antibacterials ; Antimicrobial agents ; Antimicrobial resistance ; Biological evolution ; Biological Sciences ; Child ; Chlorhexidine ; Chlorhexidine - pharmacology ; Cloning ; Colonization ; Communities ; Community-Acquired Infections - drug therapy ; Community-Acquired Infections - microbiology ; Decolonization ; Deoxyribonucleic acid ; DNA ; Drug resistance ; Epidemics ; Evolution ; Fitness ; Genetic analysis ; Genome, Bacterial - genetics ; Genomics ; Health risks ; Humans ; Infections ; Methicillin ; Methicillin-Resistant Staphylococcus aureus - drug effects ; Methicillin-Resistant Staphylococcus aureus - genetics ; Mice ; Microbial Sensitivity Tests - methods ; Mupirocin ; Mupirocin - pharmacology ; Mutation ; Pathogens ; Phages ; Phylogeny ; Plasmids ; Plasmids - genetics ; PNAS Plus ; Priming ; Reproductive fitness ; Staphylococcal Infections - drug therapy ; Staphylococcal Infections - microbiology ; Staphylococcus aureus ; Staphylococcus infections ; Virulence ; Virulence - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (5), p.1745-1754</ispartof><rights>Copyright National Academy of Sciences Jan 29, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-500a5911e741e865a07872470639d1cb2b2fbcd6bcd263921d946f0937cb9bed3</citedby><cites>FETCH-LOGICAL-c421t-500a5911e741e865a07872470639d1cb2b2fbcd6bcd263921d946f0937cb9bed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358666/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358666/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30635416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Copin, Richard</creatorcontrib><creatorcontrib>Sause, William E</creatorcontrib><creatorcontrib>Fulmer, Yi</creatorcontrib><creatorcontrib>Balasubramanian, Divya</creatorcontrib><creatorcontrib>Dyzenhaus, Sophie</creatorcontrib><creatorcontrib>Ahmed, Jamil M</creatorcontrib><creatorcontrib>Kumar, Krishan</creatorcontrib><creatorcontrib>Lees, John</creatorcontrib><creatorcontrib>Stachel, Anna</creatorcontrib><creatorcontrib>Fisher, Jason C</creatorcontrib><creatorcontrib>Drlica, Karl</creatorcontrib><creatorcontrib>Phillips, Michael</creatorcontrib><creatorcontrib>Weiser, Jeffrey N</creatorcontrib><creatorcontrib>Planet, Paul J</creatorcontrib><creatorcontrib>Uhlemann, Anne-Catrin</creatorcontrib><creatorcontrib>Altman, Deena R</creatorcontrib><creatorcontrib>Sebra, Robert</creatorcontrib><creatorcontrib>van Bakel, Harm</creatorcontrib><creatorcontrib>Lighter, Jennifer</creatorcontrib><creatorcontrib>Torres, Victor J</creatorcontrib><creatorcontrib>Shopsin, Bo</creatorcontrib><title>Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant
(CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (
) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (
) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-
spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial resistance</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>Child</subject><subject>Chlorhexidine</subject><subject>Chlorhexidine - pharmacology</subject><subject>Cloning</subject><subject>Colonization</subject><subject>Communities</subject><subject>Community-Acquired Infections - drug therapy</subject><subject>Community-Acquired Infections - microbiology</subject><subject>Decolonization</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug resistance</subject><subject>Epidemics</subject><subject>Evolution</subject><subject>Fitness</subject><subject>Genetic analysis</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomics</subject><subject>Health risks</subject><subject>Humans</subject><subject>Infections</subject><subject>Methicillin</subject><subject>Methicillin-Resistant Staphylococcus aureus - drug effects</subject><subject>Methicillin-Resistant Staphylococcus aureus - genetics</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests - methods</subject><subject>Mupirocin</subject><subject>Mupirocin - pharmacology</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>Phages</subject><subject>Phylogeny</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>PNAS Plus</subject><subject>Priming</subject><subject>Reproductive fitness</subject><subject>Staphylococcal Infections - drug therapy</subject><subject>Staphylococcal Infections - microbiology</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus infections</subject><subject>Virulence</subject><subject>Virulence - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUUtv3CAYRFWjZpv23FuF1EsvTj4wxvalUhX1JUXKIekZYcBZIgwOj5X2F_Rvl20ebXNACJiZj5lB6B2BUwJ9e7Z6mU7JQBjlHSH8BdoQGEnD2Qgv0QaA9s3AKDtGr1O6BYCxG-AVOm6Btx0jfIN-XZm7Yny20mGzC65kGzwOM97ZWJzxymDpNY4m2ZTl4ahLtP4GKxd85aQ1GqkPBBWWpXib941Ud8VGo_Fi8tYq65z1zaNCxldZrtu9CyooVRKWJZqS3qCjWbpk3j7sJ-jn1y_X59-bi8tvP84_XzSKUZKbDkB2IyGmZ8QMvJPQDz1lffUzaqImOtF5UprXResVJXpkfIax7dU0Tka3J-jTve5apsVoVa1H6cQa7SLjXgRpxf8v3m7FTdiJGtjAOa8CHx8EYqjJpSwWm5RxTnoTShKU9HVaOwCp0A_PoLehxJraHxTvAfgIFXV2j1IxpBTN_PQZAuJQsjiULP6WXBnv__XwhH9stf0Naxenlg</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Copin, Richard</creator><creator>Sause, William E</creator><creator>Fulmer, Yi</creator><creator>Balasubramanian, Divya</creator><creator>Dyzenhaus, Sophie</creator><creator>Ahmed, Jamil M</creator><creator>Kumar, Krishan</creator><creator>Lees, John</creator><creator>Stachel, Anna</creator><creator>Fisher, Jason C</creator><creator>Drlica, Karl</creator><creator>Phillips, Michael</creator><creator>Weiser, Jeffrey N</creator><creator>Planet, Paul J</creator><creator>Uhlemann, Anne-Catrin</creator><creator>Altman, Deena R</creator><creator>Sebra, Robert</creator><creator>van Bakel, Harm</creator><creator>Lighter, Jennifer</creator><creator>Torres, Victor J</creator><creator>Shopsin, Bo</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190129</creationdate><title>Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus</title><author>Copin, Richard ; Sause, William E ; Fulmer, Yi ; Balasubramanian, Divya ; Dyzenhaus, Sophie ; Ahmed, Jamil M ; Kumar, Krishan ; Lees, John ; Stachel, Anna ; Fisher, Jason C ; Drlica, Karl ; Phillips, Michael ; Weiser, Jeffrey N ; Planet, Paul J ; Uhlemann, Anne-Catrin ; Altman, Deena R ; Sebra, Robert ; van Bakel, Harm ; Lighter, Jennifer ; Torres, Victor J ; Shopsin, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-500a5911e741e865a07872470639d1cb2b2fbcd6bcd263921d946f0937cb9bed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial resistance</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>Child</topic><topic>Chlorhexidine</topic><topic>Chlorhexidine - pharmacology</topic><topic>Cloning</topic><topic>Colonization</topic><topic>Communities</topic><topic>Community-Acquired Infections - drug therapy</topic><topic>Community-Acquired Infections - microbiology</topic><topic>Decolonization</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug resistance</topic><topic>Epidemics</topic><topic>Evolution</topic><topic>Fitness</topic><topic>Genetic analysis</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomics</topic><topic>Health risks</topic><topic>Humans</topic><topic>Infections</topic><topic>Methicillin</topic><topic>Methicillin-Resistant Staphylococcus aureus - drug effects</topic><topic>Methicillin-Resistant Staphylococcus aureus - genetics</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests - methods</topic><topic>Mupirocin</topic><topic>Mupirocin - pharmacology</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>Phages</topic><topic>Phylogeny</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>PNAS Plus</topic><topic>Priming</topic><topic>Reproductive fitness</topic><topic>Staphylococcal Infections - drug therapy</topic><topic>Staphylococcal Infections - microbiology</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus infections</topic><topic>Virulence</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Copin, Richard</creatorcontrib><creatorcontrib>Sause, William E</creatorcontrib><creatorcontrib>Fulmer, Yi</creatorcontrib><creatorcontrib>Balasubramanian, Divya</creatorcontrib><creatorcontrib>Dyzenhaus, Sophie</creatorcontrib><creatorcontrib>Ahmed, Jamil M</creatorcontrib><creatorcontrib>Kumar, Krishan</creatorcontrib><creatorcontrib>Lees, John</creatorcontrib><creatorcontrib>Stachel, Anna</creatorcontrib><creatorcontrib>Fisher, Jason C</creatorcontrib><creatorcontrib>Drlica, Karl</creatorcontrib><creatorcontrib>Phillips, Michael</creatorcontrib><creatorcontrib>Weiser, Jeffrey N</creatorcontrib><creatorcontrib>Planet, Paul J</creatorcontrib><creatorcontrib>Uhlemann, Anne-Catrin</creatorcontrib><creatorcontrib>Altman, Deena R</creatorcontrib><creatorcontrib>Sebra, Robert</creatorcontrib><creatorcontrib>van Bakel, Harm</creatorcontrib><creatorcontrib>Lighter, Jennifer</creatorcontrib><creatorcontrib>Torres, Victor J</creatorcontrib><creatorcontrib>Shopsin, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Copin, Richard</au><au>Sause, William E</au><au>Fulmer, Yi</au><au>Balasubramanian, Divya</au><au>Dyzenhaus, Sophie</au><au>Ahmed, Jamil M</au><au>Kumar, Krishan</au><au>Lees, John</au><au>Stachel, Anna</au><au>Fisher, Jason C</au><au>Drlica, Karl</au><au>Phillips, Michael</au><au>Weiser, Jeffrey N</au><au>Planet, Paul J</au><au>Uhlemann, Anne-Catrin</au><au>Altman, Deena R</au><au>Sebra, Robert</au><au>van Bakel, Harm</au><au>Lighter, Jennifer</au><au>Torres, Victor J</au><au>Shopsin, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-01-29</date><risdate>2019</risdate><volume>116</volume><issue>5</issue><spage>1745</spage><epage>1754</epage><pages>1745-1754</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant
(CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (
) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (
) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-
spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30635416</pmid><doi>10.1073/pnas.1814265116</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (5), p.1745-1754 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358666 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Anti-Bacterial Agents - pharmacology Antiinfectives and antibacterials Antimicrobial agents Antimicrobial resistance Biological evolution Biological Sciences Child Chlorhexidine Chlorhexidine - pharmacology Cloning Colonization Communities Community-Acquired Infections - drug therapy Community-Acquired Infections - microbiology Decolonization Deoxyribonucleic acid DNA Drug resistance Epidemics Evolution Fitness Genetic analysis Genome, Bacterial - genetics Genomics Health risks Humans Infections Methicillin Methicillin-Resistant Staphylococcus aureus - drug effects Methicillin-Resistant Staphylococcus aureus - genetics Mice Microbial Sensitivity Tests - methods Mupirocin Mupirocin - pharmacology Mutation Pathogens Phages Phylogeny Plasmids Plasmids - genetics PNAS Plus Priming Reproductive fitness Staphylococcal Infections - drug therapy Staphylococcal Infections - microbiology Staphylococcus aureus Staphylococcus infections Virulence Virulence - genetics |
title | Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20evolution%20of%20virulence%20and%20resistance%20during%20clonal%20spread%20of%20community-acquired%20methicillin-resistant%20Staphylococcus%20aureus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Copin,%20Richard&rft.date=2019-01-29&rft.volume=116&rft.issue=5&rft.spage=1745&rft.epage=1754&rft.pages=1745-1754&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1814265116&rft_dat=%3Cproquest_pubme%3E2176700690%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176700690&rft_id=info:pmid/30635416&rfr_iscdi=true |