iPSC model of CHRFAM7A effect on α7 nicotinic acetylcholine receptor function in the human context

The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational psychiatry 2019-02, Vol.9 (1), p.59-59, Article 59
Hauptverfasser: Ihnatovych, Ivanna, Nayak, Tapan K., Ouf, Aya, Sule, Norbert, Birkaya, Barbara, Chaves, Lee, Auerbach, Anthony, Szigeti, Kinga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 59
container_title Translational psychiatry
container_volume 9
creator Ihnatovych, Ivanna
Nayak, Tapan K.
Ouf, Aya
Sule, Norbert
Birkaya, Barbara
Chaves, Lee
Auerbach, Anthony
Szigeti, Kinga
description The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fusion gene with properties that enable incorporation into the α7nAChR and, being human specific, CHRFAM7A effect was not accounted for in preclinical studies. We hypothesized that CHRFAM7A may account for this translational gap and understanding its function may offer novel insights when exploring α7nAChR as a drug target. CHRFAM7A is present in different copy number variations (CNV) in the human genome with high frequency. To study the functional consequences of the presence of the CHRFAM7A , two induced pluripotent stem cell (iPSC) lines (0 copy and 1 copy direct) were developed. The 0 copy line was rescued with CHRFAM7A transfection to control for genetic heterogeneity. As readouts for genotype–phenotype correlation, α7nAChR synaptic transmission and amyloid beta 1–42 (Aβ 1–42 ) uptake were tested. Synaptic transmission in the presence of CHRFAM7A demonstrated that PNU-modulated desensitization of α7nAChR currents increased as a function of CHRFAM7A dosage. CHRFAM7A mitigated the dose response of Aβ 1–42 uptake suggesting a protective effect beyond physiological concentrations. Furthermore, in the presence of CHRFAM7A Aβ 1–42 uptake activated neuronal interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) without activating the canonical inflammasome pathway. Lead optimization may identify more potent molecules when the screen has a model harboring CHRFAM7A . Incorporating pharmacogenetics into clinical trials may enhance signals in efficacy measures.
doi_str_mv 10.1038/s41398-019-0375-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174744622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385z-28d8c0abd870c5bb0b45cff4e1508ce37c17c60532175f589fef5e83d36406973</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEolXpA3BBlrhwCYxjO3YuSKtVS5GKQPw5W4kz7rpK7MV2EN234kV4JrzaUgoSc_CMNL_5xqOvqp5SeEmBqVeJU9apGmhXA5Oi3j2ojhsqVM2oUg_v1UfVaUrXUEJwRSV9XB0xkBRAsuPKuA-f1mQOI04kWLK--Hi-eidXBK1Fk0nw5OcPSbwzIbvykt5gvpnMJkzOI4locJtDJHbxJrtCO0_yBslmmXtPTPAZv-cn1SPbTwlPb_NJ9eX87PP6or58_-btenVZG6bErm7UqAz0w6gkGDEMMHBhrOVIBSiDTBoqTQuCNVQKK1Rn0QpUbGQth7aT7KR6fdDdLsOMo0GfYz_pbXRzH2906J3-u-PdRl-Fb7plQrXQFoEXtwIxfF0wZT27ZHCaeo9hSbos7gTwDpqCPv8HvQ5L9OW8PcUl522zp-iBMjGkFNHefYaC3ruoDy7q4qLeu6h3ZebZ_SvuJn57VoDmAKTS8lcY_6z-v-ovezmopw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174744622</pqid></control><display><type>article</type><title>iPSC model of CHRFAM7A effect on α7 nicotinic acetylcholine receptor function in the human context</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ihnatovych, Ivanna ; Nayak, Tapan K. ; Ouf, Aya ; Sule, Norbert ; Birkaya, Barbara ; Chaves, Lee ; Auerbach, Anthony ; Szigeti, Kinga</creator><creatorcontrib>Ihnatovych, Ivanna ; Nayak, Tapan K. ; Ouf, Aya ; Sule, Norbert ; Birkaya, Barbara ; Chaves, Lee ; Auerbach, Anthony ; Szigeti, Kinga</creatorcontrib><description>The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fusion gene with properties that enable incorporation into the α7nAChR and, being human specific, CHRFAM7A effect was not accounted for in preclinical studies. We hypothesized that CHRFAM7A may account for this translational gap and understanding its function may offer novel insights when exploring α7nAChR as a drug target. CHRFAM7A is present in different copy number variations (CNV) in the human genome with high frequency. To study the functional consequences of the presence of the CHRFAM7A , two induced pluripotent stem cell (iPSC) lines (0 copy and 1 copy direct) were developed. The 0 copy line was rescued with CHRFAM7A transfection to control for genetic heterogeneity. As readouts for genotype–phenotype correlation, α7nAChR synaptic transmission and amyloid beta 1–42 (Aβ 1–42 ) uptake were tested. Synaptic transmission in the presence of CHRFAM7A demonstrated that PNU-modulated desensitization of α7nAChR currents increased as a function of CHRFAM7A dosage. CHRFAM7A mitigated the dose response of Aβ 1–42 uptake suggesting a protective effect beyond physiological concentrations. Furthermore, in the presence of CHRFAM7A Aβ 1–42 uptake activated neuronal interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) without activating the canonical inflammasome pathway. Lead optimization may identify more potent molecules when the screen has a model harboring CHRFAM7A . Incorporating pharmacogenetics into clinical trials may enhance signals in efficacy measures.</description><identifier>ISSN: 2158-3188</identifier><identifier>EISSN: 2158-3188</identifier><identifier>DOI: 10.1038/s41398-019-0375-z</identifier><identifier>PMID: 30710073</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/1 ; 13/95 ; 14/19 ; 45/77 ; 631/378 ; 631/532 ; 9/74 ; 96/100 ; 96/31 ; alpha7 Nicotinic Acetylcholine Receptor - metabolism ; Amyloid beta-Peptides - administration &amp; dosage ; Amyloid beta-Peptides - metabolism ; Behavioral Sciences ; Biological Psychology ; Cell Differentiation ; Cells, Cultured ; Clinical trials ; Gene Expression ; HEK293 Cells ; Humans ; Induced Pluripotent Stem Cells - metabolism ; Inflammation - metabolism ; Medicine ; Medicine &amp; Public Health ; Neurons - metabolism ; Neurosciences ; Peptide Fragments - administration &amp; dosage ; Peptide Fragments - metabolism ; Pharmacotherapy ; Psychiatry ; Synaptic Transmission ; Tumor necrosis factor-TNF</subject><ispartof>Translational psychiatry, 2019-02, Vol.9 (1), p.59-59, Article 59</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385z-28d8c0abd870c5bb0b45cff4e1508ce37c17c60532175f589fef5e83d36406973</citedby><cites>FETCH-LOGICAL-c385z-28d8c0abd870c5bb0b45cff4e1508ce37c17c60532175f589fef5e83d36406973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358606/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358606/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30710073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ihnatovych, Ivanna</creatorcontrib><creatorcontrib>Nayak, Tapan K.</creatorcontrib><creatorcontrib>Ouf, Aya</creatorcontrib><creatorcontrib>Sule, Norbert</creatorcontrib><creatorcontrib>Birkaya, Barbara</creatorcontrib><creatorcontrib>Chaves, Lee</creatorcontrib><creatorcontrib>Auerbach, Anthony</creatorcontrib><creatorcontrib>Szigeti, Kinga</creatorcontrib><title>iPSC model of CHRFAM7A effect on α7 nicotinic acetylcholine receptor function in the human context</title><title>Translational psychiatry</title><addtitle>Transl Psychiatry</addtitle><addtitle>Transl Psychiatry</addtitle><description>The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fusion gene with properties that enable incorporation into the α7nAChR and, being human specific, CHRFAM7A effect was not accounted for in preclinical studies. We hypothesized that CHRFAM7A may account for this translational gap and understanding its function may offer novel insights when exploring α7nAChR as a drug target. CHRFAM7A is present in different copy number variations (CNV) in the human genome with high frequency. To study the functional consequences of the presence of the CHRFAM7A , two induced pluripotent stem cell (iPSC) lines (0 copy and 1 copy direct) were developed. The 0 copy line was rescued with CHRFAM7A transfection to control for genetic heterogeneity. As readouts for genotype–phenotype correlation, α7nAChR synaptic transmission and amyloid beta 1–42 (Aβ 1–42 ) uptake were tested. Synaptic transmission in the presence of CHRFAM7A demonstrated that PNU-modulated desensitization of α7nAChR currents increased as a function of CHRFAM7A dosage. CHRFAM7A mitigated the dose response of Aβ 1–42 uptake suggesting a protective effect beyond physiological concentrations. Furthermore, in the presence of CHRFAM7A Aβ 1–42 uptake activated neuronal interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) without activating the canonical inflammasome pathway. Lead optimization may identify more potent molecules when the screen has a model harboring CHRFAM7A . Incorporating pharmacogenetics into clinical trials may enhance signals in efficacy measures.</description><subject>101/1</subject><subject>13/95</subject><subject>14/19</subject><subject>45/77</subject><subject>631/378</subject><subject>631/532</subject><subject>9/74</subject><subject>96/100</subject><subject>96/31</subject><subject>alpha7 Nicotinic Acetylcholine Receptor - metabolism</subject><subject>Amyloid beta-Peptides - administration &amp; dosage</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Clinical trials</subject><subject>Gene Expression</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Inflammation - metabolism</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Peptide Fragments - administration &amp; dosage</subject><subject>Peptide Fragments - metabolism</subject><subject>Pharmacotherapy</subject><subject>Psychiatry</subject><subject>Synaptic Transmission</subject><subject>Tumor necrosis factor-TNF</subject><issn>2158-3188</issn><issn>2158-3188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc9u1DAQxiMEolXpA3BBlrhwCYxjO3YuSKtVS5GKQPw5W4kz7rpK7MV2EN234kV4JrzaUgoSc_CMNL_5xqOvqp5SeEmBqVeJU9apGmhXA5Oi3j2ojhsqVM2oUg_v1UfVaUrXUEJwRSV9XB0xkBRAsuPKuA-f1mQOI04kWLK--Hi-eidXBK1Fk0nw5OcPSbwzIbvykt5gvpnMJkzOI4locJtDJHbxJrtCO0_yBslmmXtPTPAZv-cn1SPbTwlPb_NJ9eX87PP6or58_-btenVZG6bErm7UqAz0w6gkGDEMMHBhrOVIBSiDTBoqTQuCNVQKK1Rn0QpUbGQth7aT7KR6fdDdLsOMo0GfYz_pbXRzH2906J3-u-PdRl-Fb7plQrXQFoEXtwIxfF0wZT27ZHCaeo9hSbos7gTwDpqCPv8HvQ5L9OW8PcUl522zp-iBMjGkFNHefYaC3ruoDy7q4qLeu6h3ZebZ_SvuJn57VoDmAKTS8lcY_6z-v-ovezmopw</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Ihnatovych, Ivanna</creator><creator>Nayak, Tapan K.</creator><creator>Ouf, Aya</creator><creator>Sule, Norbert</creator><creator>Birkaya, Barbara</creator><creator>Chaves, Lee</creator><creator>Auerbach, Anthony</creator><creator>Szigeti, Kinga</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190201</creationdate><title>iPSC model of CHRFAM7A effect on α7 nicotinic acetylcholine receptor function in the human context</title><author>Ihnatovych, Ivanna ; Nayak, Tapan K. ; Ouf, Aya ; Sule, Norbert ; Birkaya, Barbara ; Chaves, Lee ; Auerbach, Anthony ; Szigeti, Kinga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385z-28d8c0abd870c5bb0b45cff4e1508ce37c17c60532175f589fef5e83d36406973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>101/1</topic><topic>13/95</topic><topic>14/19</topic><topic>45/77</topic><topic>631/378</topic><topic>631/532</topic><topic>9/74</topic><topic>96/100</topic><topic>96/31</topic><topic>alpha7 Nicotinic Acetylcholine Receptor - metabolism</topic><topic>Amyloid beta-Peptides - administration &amp; dosage</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Clinical trials</topic><topic>Gene Expression</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Inflammation - metabolism</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Peptide Fragments - administration &amp; dosage</topic><topic>Peptide Fragments - metabolism</topic><topic>Pharmacotherapy</topic><topic>Psychiatry</topic><topic>Synaptic Transmission</topic><topic>Tumor necrosis factor-TNF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ihnatovych, Ivanna</creatorcontrib><creatorcontrib>Nayak, Tapan K.</creatorcontrib><creatorcontrib>Ouf, Aya</creatorcontrib><creatorcontrib>Sule, Norbert</creatorcontrib><creatorcontrib>Birkaya, Barbara</creatorcontrib><creatorcontrib>Chaves, Lee</creatorcontrib><creatorcontrib>Auerbach, Anthony</creatorcontrib><creatorcontrib>Szigeti, Kinga</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ihnatovych, Ivanna</au><au>Nayak, Tapan K.</au><au>Ouf, Aya</au><au>Sule, Norbert</au><au>Birkaya, Barbara</au><au>Chaves, Lee</au><au>Auerbach, Anthony</au><au>Szigeti, Kinga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iPSC model of CHRFAM7A effect on α7 nicotinic acetylcholine receptor function in the human context</atitle><jtitle>Translational psychiatry</jtitle><stitle>Transl Psychiatry</stitle><addtitle>Transl Psychiatry</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>59</spage><epage>59</epage><pages>59-59</pages><artnum>59</artnum><issn>2158-3188</issn><eissn>2158-3188</eissn><abstract>The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fusion gene with properties that enable incorporation into the α7nAChR and, being human specific, CHRFAM7A effect was not accounted for in preclinical studies. We hypothesized that CHRFAM7A may account for this translational gap and understanding its function may offer novel insights when exploring α7nAChR as a drug target. CHRFAM7A is present in different copy number variations (CNV) in the human genome with high frequency. To study the functional consequences of the presence of the CHRFAM7A , two induced pluripotent stem cell (iPSC) lines (0 copy and 1 copy direct) were developed. The 0 copy line was rescued with CHRFAM7A transfection to control for genetic heterogeneity. As readouts for genotype–phenotype correlation, α7nAChR synaptic transmission and amyloid beta 1–42 (Aβ 1–42 ) uptake were tested. Synaptic transmission in the presence of CHRFAM7A demonstrated that PNU-modulated desensitization of α7nAChR currents increased as a function of CHRFAM7A dosage. CHRFAM7A mitigated the dose response of Aβ 1–42 uptake suggesting a protective effect beyond physiological concentrations. Furthermore, in the presence of CHRFAM7A Aβ 1–42 uptake activated neuronal interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) without activating the canonical inflammasome pathway. Lead optimization may identify more potent molecules when the screen has a model harboring CHRFAM7A . Incorporating pharmacogenetics into clinical trials may enhance signals in efficacy measures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30710073</pmid><doi>10.1038/s41398-019-0375-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3188
ispartof Translational psychiatry, 2019-02, Vol.9 (1), p.59-59, Article 59
issn 2158-3188
2158-3188
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358606
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 101/1
13/95
14/19
45/77
631/378
631/532
9/74
96/100
96/31
alpha7 Nicotinic Acetylcholine Receptor - metabolism
Amyloid beta-Peptides - administration & dosage
Amyloid beta-Peptides - metabolism
Behavioral Sciences
Biological Psychology
Cell Differentiation
Cells, Cultured
Clinical trials
Gene Expression
HEK293 Cells
Humans
Induced Pluripotent Stem Cells - metabolism
Inflammation - metabolism
Medicine
Medicine & Public Health
Neurons - metabolism
Neurosciences
Peptide Fragments - administration & dosage
Peptide Fragments - metabolism
Pharmacotherapy
Psychiatry
Synaptic Transmission
Tumor necrosis factor-TNF
title iPSC model of CHRFAM7A effect on α7 nicotinic acetylcholine receptor function in the human context
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iPSC%20model%20of%20CHRFAM7A%20effect%20on%20%CE%B17%20nicotinic%20acetylcholine%20receptor%20function%20in%20the%20human%20context&rft.jtitle=Translational%20psychiatry&rft.au=Ihnatovych,%20Ivanna&rft.date=2019-02-01&rft.volume=9&rft.issue=1&rft.spage=59&rft.epage=59&rft.pages=59-59&rft.artnum=59&rft.issn=2158-3188&rft.eissn=2158-3188&rft_id=info:doi/10.1038/s41398-019-0375-z&rft_dat=%3Cproquest_pubme%3E2174744622%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174744622&rft_id=info:pmid/30710073&rfr_iscdi=true