Computational approaches for discovery of mutational signatures in cancer

Abstract The accumulation of somatic mutations in a genome is the result of the activity of one or more mutagenic processes, each of which leaves its own imprint. The study of these DNA fingerprints, termed mutational signatures, holds important potential for furthering our understanding of the caus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2019-01, Vol.20 (1), p.77-88
Hauptverfasser: Baez-Ortega, Adrian, Gori, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 77
container_title Briefings in bioinformatics
container_volume 20
creator Baez-Ortega, Adrian
Gori, Kevin
description Abstract The accumulation of somatic mutations in a genome is the result of the activity of one or more mutagenic processes, each of which leaves its own imprint. The study of these DNA fingerprints, termed mutational signatures, holds important potential for furthering our understanding of the causes and evolution of cancer, and can provide insights of relevance for cancer prevention and treatment. In this review, we focus our attention on the mathematical models and computational techniques that have driven recent advances in the field.
doi_str_mv 10.1093/bib/bbx082
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6357558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbx082</oup_id><sourcerecordid>2429010008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-520b6ce166c01812870ae99335bc5ab201831cc767af6d3d2ac97b7c09c3610f3</originalsourceid><addsrcrecordid>eNp90VtLwzAYBuAgiofpjT9ACiKIUP2SNEl7I8jwBANv9DokWbpV2qYm7XD_3ozpPFx4lZA8vHzJi9AxhksMBb3Slb7S-h1ysoX2cSZEmgHLtld7LlKWcbqHDkJ4BSAgcryL9khe8JxTvI8ex67phl71lWtVnaiu806ZuQ1J6XwyrYJxC-uXiSuT5puFataqfvCRVW1iVGusP0Q7paqDPfpcR-jl7vZ5_JBOnu4fxzeT1DDK-pQR0NxYzLkBnGOSC1C2KChl2jClSTyk2BjBhSr5lE6JMoXQwkBhKMdQ0hG6Xud2g27s1Ni296qWna8a5ZfSqUr-vmmruZy5heSUCcbyGHD-GeDd22BDL5v4TFvXqrVuCJJkGfACGKaRnv6hr27w8QdWihSAAWAVeLFWxrsQvC03w2CQq4ZkbEiuG4r45Of4G_pVSQRna-CG7r-gD7oAmjE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429010008</pqid></control><display><type>article</type><title>Computational approaches for discovery of mutational signatures in cancer</title><source>Oxford Journals Open Access Collection</source><creator>Baez-Ortega, Adrian ; Gori, Kevin</creator><creatorcontrib>Baez-Ortega, Adrian ; Gori, Kevin</creatorcontrib><description>Abstract The accumulation of somatic mutations in a genome is the result of the activity of one or more mutagenic processes, each of which leaves its own imprint. The study of these DNA fingerprints, termed mutational signatures, holds important potential for furthering our understanding of the causes and evolution of cancer, and can provide insights of relevance for cancer prevention and treatment. In this review, we focus our attention on the mathematical models and computational techniques that have driven recent advances in the field.</description><identifier>ISSN: 1467-5463</identifier><identifier>ISSN: 1477-4054</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbx082</identifier><identifier>PMID: 28968631</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayes Theorem ; Cancer ; Computational Biology ; Computer applications ; Deoxyribonucleic acid ; DNA ; DNA fingerprinting ; DNA, Neoplasm - genetics ; genome ; Genome, Human ; Genomes ; High-Throughput Nucleotide Sequencing - statistics &amp; numerical data ; Humans ; Mathematical models ; Models, Genetic ; Models, Statistical ; mutagens ; Mutation ; neoplasms ; Neoplasms - genetics ; Sequence Analysis, DNA - statistics &amp; numerical data ; Signatures ; Software ; somatic mutation</subject><ispartof>Briefings in bioinformatics, 2019-01, Vol.20 (1), p.77-88</ispartof><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017</rights><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-520b6ce166c01812870ae99335bc5ab201831cc767af6d3d2ac97b7c09c3610f3</citedby><cites>FETCH-LOGICAL-c535t-520b6ce166c01812870ae99335bc5ab201831cc767af6d3d2ac97b7c09c3610f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357558/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357558/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbx082$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28968631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baez-Ortega, Adrian</creatorcontrib><creatorcontrib>Gori, Kevin</creatorcontrib><title>Computational approaches for discovery of mutational signatures in cancer</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract The accumulation of somatic mutations in a genome is the result of the activity of one or more mutagenic processes, each of which leaves its own imprint. The study of these DNA fingerprints, termed mutational signatures, holds important potential for furthering our understanding of the causes and evolution of cancer, and can provide insights of relevance for cancer prevention and treatment. In this review, we focus our attention on the mathematical models and computational techniques that have driven recent advances in the field.</description><subject>Bayes Theorem</subject><subject>Cancer</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA fingerprinting</subject><subject>DNA, Neoplasm - genetics</subject><subject>genome</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>mutagens</subject><subject>Mutation</subject><subject>neoplasms</subject><subject>Neoplasms - genetics</subject><subject>Sequence Analysis, DNA - statistics &amp; numerical data</subject><subject>Signatures</subject><subject>Software</subject><subject>somatic mutation</subject><issn>1467-5463</issn><issn>1477-4054</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90VtLwzAYBuAgiofpjT9ACiKIUP2SNEl7I8jwBANv9DokWbpV2qYm7XD_3ozpPFx4lZA8vHzJi9AxhksMBb3Slb7S-h1ysoX2cSZEmgHLtld7LlKWcbqHDkJ4BSAgcryL9khe8JxTvI8ex67phl71lWtVnaiu806ZuQ1J6XwyrYJxC-uXiSuT5puFataqfvCRVW1iVGusP0Q7paqDPfpcR-jl7vZ5_JBOnu4fxzeT1DDK-pQR0NxYzLkBnGOSC1C2KChl2jClSTyk2BjBhSr5lE6JMoXQwkBhKMdQ0hG6Xud2g27s1Ni296qWna8a5ZfSqUr-vmmruZy5heSUCcbyGHD-GeDd22BDL5v4TFvXqrVuCJJkGfACGKaRnv6hr27w8QdWihSAAWAVeLFWxrsQvC03w2CQq4ZkbEiuG4r45Of4G_pVSQRna-CG7r-gD7oAmjE</recordid><startdate>20190118</startdate><enddate>20190118</enddate><creator>Baez-Ortega, Adrian</creator><creator>Gori, Kevin</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190118</creationdate><title>Computational approaches for discovery of mutational signatures in cancer</title><author>Baez-Ortega, Adrian ; Gori, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-520b6ce166c01812870ae99335bc5ab201831cc767af6d3d2ac97b7c09c3610f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes Theorem</topic><topic>Cancer</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA fingerprinting</topic><topic>DNA, Neoplasm - genetics</topic><topic>genome</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>mutagens</topic><topic>Mutation</topic><topic>neoplasms</topic><topic>Neoplasms - genetics</topic><topic>Sequence Analysis, DNA - statistics &amp; numerical data</topic><topic>Signatures</topic><topic>Software</topic><topic>somatic mutation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baez-Ortega, Adrian</creatorcontrib><creatorcontrib>Gori, Kevin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baez-Ortega, Adrian</au><au>Gori, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational approaches for discovery of mutational signatures in cancer</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2019-01-18</date><risdate>2019</risdate><volume>20</volume><issue>1</issue><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>1467-5463</issn><issn>1477-4054</issn><eissn>1477-4054</eissn><abstract>Abstract The accumulation of somatic mutations in a genome is the result of the activity of one or more mutagenic processes, each of which leaves its own imprint. The study of these DNA fingerprints, termed mutational signatures, holds important potential for furthering our understanding of the causes and evolution of cancer, and can provide insights of relevance for cancer prevention and treatment. In this review, we focus our attention on the mathematical models and computational techniques that have driven recent advances in the field.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28968631</pmid><doi>10.1093/bib/bbx082</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2019-01, Vol.20 (1), p.77-88
issn 1467-5463
1477-4054
1477-4054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6357558
source Oxford Journals Open Access Collection
subjects Bayes Theorem
Cancer
Computational Biology
Computer applications
Deoxyribonucleic acid
DNA
DNA fingerprinting
DNA, Neoplasm - genetics
genome
Genome, Human
Genomes
High-Throughput Nucleotide Sequencing - statistics & numerical data
Humans
Mathematical models
Models, Genetic
Models, Statistical
mutagens
Mutation
neoplasms
Neoplasms - genetics
Sequence Analysis, DNA - statistics & numerical data
Signatures
Software
somatic mutation
title Computational approaches for discovery of mutational signatures in cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20approaches%20for%20discovery%20of%20mutational%20signatures%20in%20cancer&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Baez-Ortega,%20Adrian&rft.date=2019-01-18&rft.volume=20&rft.issue=1&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbx082&rft_dat=%3Cproquest_TOX%3E2429010008%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429010008&rft_id=info:pmid/28968631&rft_oup_id=10.1093/bib/bbx082&rfr_iscdi=true