Asymptotic Homogenization Applied to Flexoelectric Rods
In this manuscript, the equilibrium problem for a flexoelectric one-dimensional composite material is studied. The two-scales asymptotic homogenization method is used to derive the homogenized formulation of this problem. The manuscript offers a step-by-step methodology to derive effective coefficie...
Gespeichert in:
Veröffentlicht in: | Materials 2019-01, Vol.12 (2), p.232 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 232 |
container_title | Materials |
container_volume | 12 |
creator | Guinovart-Sanjuán, David Merodio, Jose López-Realpozo, Juan Carlos Vajravelu, Kuppalapalle Rodríguez-Ramos, Reinaldo Guinovart-Díaz, Raúl Bravo-Castillero, Julián Sabina, Federico J |
description | In this manuscript, the equilibrium problem for a flexoelectric one-dimensional composite material is studied. The two-scales asymptotic homogenization method is used to derive the homogenized formulation of this problem. The manuscript offers a step-by-step methodology to derive effective coefficients and to solve local problems. As an illustrative example, results reported in the literature for piezoelectric composites are obtained as a particular case of the formulation derived here. Finally, three flexoelectric/piezoelectric composites are studied to illustrate the influence of the flexoelectric property on the effective coefficients and the global behavior of the structure. |
doi_str_mv | 10.3390/ma12020232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6356779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179335053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-df2cc4ff9a33bcea2b8cfff4009aec8fbd378d8f7286bde971130da7a26e34e33</originalsourceid><addsrcrecordid>eNpdkVFLwzAQx4Mobsy9-AFk4IsI1STXtc2LMIZzwkAQfQ5pepkdbVObVJyf3o7NOb17uIP78b87_oScM3oDIOhtqRinXQI_In0mRBQwEYbHB32PDJ1b0S4AWMLFKekBjUImKO2TeOLWZe2tz_Vobku7xCr_Uj631WhS10WO2cjb0azAT4sFat903LPN3Bk5MapwONzVAXmd3b9M58Hi6eFxOlkEOqSRDzLDtQ6NEQog1ah4mmhjTEipUKgTk2YQJ1liYp5EaYYiZgxopmLFI4QQAQbkbqtbt2mJmcbKN6qQdZOXqllLq3L5d1Llb3JpP2QE4yiORSdwtRNo7HuLzssydxqLQlVoWyc56yAY0_Fm1-U_dGXbpurekxyA85hzsRG83lK6sc41aPbHMCo3lshfSzr44vD8PfpjAHwDQ4aHVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332272299</pqid></control><display><type>article</type><title>Asymptotic Homogenization Applied to Flexoelectric Rods</title><source>PubMed Central Free</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Guinovart-Sanjuán, David ; Merodio, Jose ; López-Realpozo, Juan Carlos ; Vajravelu, Kuppalapalle ; Rodríguez-Ramos, Reinaldo ; Guinovart-Díaz, Raúl ; Bravo-Castillero, Julián ; Sabina, Federico J</creator><creatorcontrib>Guinovart-Sanjuán, David ; Merodio, Jose ; López-Realpozo, Juan Carlos ; Vajravelu, Kuppalapalle ; Rodríguez-Ramos, Reinaldo ; Guinovart-Díaz, Raúl ; Bravo-Castillero, Julián ; Sabina, Federico J</creatorcontrib><description>In this manuscript, the equilibrium problem for a flexoelectric one-dimensional composite material is studied. The two-scales asymptotic homogenization method is used to derive the homogenized formulation of this problem. The manuscript offers a step-by-step methodology to derive effective coefficients and to solve local problems. As an illustrative example, results reported in the literature for piezoelectric composites are obtained as a particular case of the formulation derived here. Finally, three flexoelectric/piezoelectric composites are studied to illustrate the influence of the flexoelectric property on the effective coefficients and the global behavior of the structure.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12020232</identifier><identifier>PMID: 30641900</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Boundary conditions ; Boundary value problems ; Composite materials ; Deformation effects ; Dielectrics ; Electric fields ; Energy harvesting ; Equilibrium ; Finite element analysis ; Homogenization ; Methods ; Ordinary differential equations ; Piezoelectricity</subject><ispartof>Materials, 2019-01, Vol.12 (2), p.232</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-df2cc4ff9a33bcea2b8cfff4009aec8fbd378d8f7286bde971130da7a26e34e33</citedby><cites>FETCH-LOGICAL-c406t-df2cc4ff9a33bcea2b8cfff4009aec8fbd378d8f7286bde971130da7a26e34e33</cites><orcidid>0000-0002-0687-0993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356779/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356779/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30641900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guinovart-Sanjuán, David</creatorcontrib><creatorcontrib>Merodio, Jose</creatorcontrib><creatorcontrib>López-Realpozo, Juan Carlos</creatorcontrib><creatorcontrib>Vajravelu, Kuppalapalle</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Reinaldo</creatorcontrib><creatorcontrib>Guinovart-Díaz, Raúl</creatorcontrib><creatorcontrib>Bravo-Castillero, Julián</creatorcontrib><creatorcontrib>Sabina, Federico J</creatorcontrib><title>Asymptotic Homogenization Applied to Flexoelectric Rods</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this manuscript, the equilibrium problem for a flexoelectric one-dimensional composite material is studied. The two-scales asymptotic homogenization method is used to derive the homogenized formulation of this problem. The manuscript offers a step-by-step methodology to derive effective coefficients and to solve local problems. As an illustrative example, results reported in the literature for piezoelectric composites are obtained as a particular case of the formulation derived here. Finally, three flexoelectric/piezoelectric composites are studied to illustrate the influence of the flexoelectric property on the effective coefficients and the global behavior of the structure.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Composite materials</subject><subject>Deformation effects</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Energy harvesting</subject><subject>Equilibrium</subject><subject>Finite element analysis</subject><subject>Homogenization</subject><subject>Methods</subject><subject>Ordinary differential equations</subject><subject>Piezoelectricity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFLwzAQx4Mobsy9-AFk4IsI1STXtc2LMIZzwkAQfQ5pepkdbVObVJyf3o7NOb17uIP78b87_oScM3oDIOhtqRinXQI_In0mRBQwEYbHB32PDJ1b0S4AWMLFKekBjUImKO2TeOLWZe2tz_Vobku7xCr_Uj631WhS10WO2cjb0azAT4sFat903LPN3Bk5MapwONzVAXmd3b9M58Hi6eFxOlkEOqSRDzLDtQ6NEQog1ah4mmhjTEipUKgTk2YQJ1liYp5EaYYiZgxopmLFI4QQAQbkbqtbt2mJmcbKN6qQdZOXqllLq3L5d1Llb3JpP2QE4yiORSdwtRNo7HuLzssydxqLQlVoWyc56yAY0_Fm1-U_dGXbpurekxyA85hzsRG83lK6sc41aPbHMCo3lshfSzr44vD8PfpjAHwDQ4aHVA</recordid><startdate>20190111</startdate><enddate>20190111</enddate><creator>Guinovart-Sanjuán, David</creator><creator>Merodio, Jose</creator><creator>López-Realpozo, Juan Carlos</creator><creator>Vajravelu, Kuppalapalle</creator><creator>Rodríguez-Ramos, Reinaldo</creator><creator>Guinovart-Díaz, Raúl</creator><creator>Bravo-Castillero, Julián</creator><creator>Sabina, Federico J</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0687-0993</orcidid></search><sort><creationdate>20190111</creationdate><title>Asymptotic Homogenization Applied to Flexoelectric Rods</title><author>Guinovart-Sanjuán, David ; Merodio, Jose ; López-Realpozo, Juan Carlos ; Vajravelu, Kuppalapalle ; Rodríguez-Ramos, Reinaldo ; Guinovart-Díaz, Raúl ; Bravo-Castillero, Julián ; Sabina, Federico J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-df2cc4ff9a33bcea2b8cfff4009aec8fbd378d8f7286bde971130da7a26e34e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Composite materials</topic><topic>Deformation effects</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Energy harvesting</topic><topic>Equilibrium</topic><topic>Finite element analysis</topic><topic>Homogenization</topic><topic>Methods</topic><topic>Ordinary differential equations</topic><topic>Piezoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guinovart-Sanjuán, David</creatorcontrib><creatorcontrib>Merodio, Jose</creatorcontrib><creatorcontrib>López-Realpozo, Juan Carlos</creatorcontrib><creatorcontrib>Vajravelu, Kuppalapalle</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Reinaldo</creatorcontrib><creatorcontrib>Guinovart-Díaz, Raúl</creatorcontrib><creatorcontrib>Bravo-Castillero, Julián</creatorcontrib><creatorcontrib>Sabina, Federico J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guinovart-Sanjuán, David</au><au>Merodio, Jose</au><au>López-Realpozo, Juan Carlos</au><au>Vajravelu, Kuppalapalle</au><au>Rodríguez-Ramos, Reinaldo</au><au>Guinovart-Díaz, Raúl</au><au>Bravo-Castillero, Julián</au><au>Sabina, Federico J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Homogenization Applied to Flexoelectric Rods</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-01-11</date><risdate>2019</risdate><volume>12</volume><issue>2</issue><spage>232</spage><pages>232-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this manuscript, the equilibrium problem for a flexoelectric one-dimensional composite material is studied. The two-scales asymptotic homogenization method is used to derive the homogenized formulation of this problem. The manuscript offers a step-by-step methodology to derive effective coefficients and to solve local problems. As an illustrative example, results reported in the literature for piezoelectric composites are obtained as a particular case of the formulation derived here. Finally, three flexoelectric/piezoelectric composites are studied to illustrate the influence of the flexoelectric property on the effective coefficients and the global behavior of the structure.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30641900</pmid><doi>10.3390/ma12020232</doi><orcidid>https://orcid.org/0000-0002-0687-0993</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-01, Vol.12 (2), p.232 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6356779 |
source | PubMed Central Free; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Boundary conditions Boundary value problems Composite materials Deformation effects Dielectrics Electric fields Energy harvesting Equilibrium Finite element analysis Homogenization Methods Ordinary differential equations Piezoelectricity |
title | Asymptotic Homogenization Applied to Flexoelectric Rods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Homogenization%20Applied%20to%20Flexoelectric%20Rods&rft.jtitle=Materials&rft.au=Guinovart-Sanju%C3%A1n,%20David&rft.date=2019-01-11&rft.volume=12&rft.issue=2&rft.spage=232&rft.pages=232-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12020232&rft_dat=%3Cproquest_pubme%3E2179335053%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332272299&rft_id=info:pmid/30641900&rfr_iscdi=true |