Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease

Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson’s disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, parad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-01, Vol.9 (1), p.880-880, Article 880
Hauptverfasser: Philippens, Ingrid H. C. H. M., Wubben, Jacqueline A., Franke, Sigrid K., Hofman, Sam, Langermans, Jan A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 880
container_issue 1
container_start_page 880
container_title Scientific reports
container_volume 9
creator Philippens, Ingrid H. C. H. M.
Wubben, Jacqueline A.
Franke, Sigrid K.
Hofman, Sam
Langermans, Jan A. M.
description Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson’s disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, paradoxical movement and sensorimotor rhythm (SMR). Indeed, the size of the red nucleus, connecting the cerebellum with the cerebral cortex, is larger in Parkinson’s disease patients suggesting an increased activation of this brain area. Therefore, the red nucleus was examined in MPTP-induced parkinsonian marmoset monkeys during the presymptomatic stage and after SMR activation by neurofeedback training. We found a reverse significant correlation between the early expression of parkinsonian signs and the size of the parvocellular part of the red nucleus, which is predominantly present in human and non-human primates. In quadrupedal animals it consists mainly of the magnocellular part. Furthermore, SMR activation, that mitigated parkinsonian signs, further increased the size of the red nucleus in the marmoset monkey. This plasticity of the brain helps to compensate for dysfunctional movement control and can be a promising target for compensatory treatment with neurofeedback technology, vibrotactile stimulation or DBS in order to improve the quality of life for Parkinson’s disease patients.
doi_str_mv 10.1038/s41598-018-37381-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6351580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179440981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ea067790d69e0b86d99fe02221530bbada55c931cfc1d79af15ddb6ab10e26003</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EolXpC7BAltiwSfFP7MQbJHQppVIFFT9ry4knvSmJHTzJhbtjwUvwejwJSW9pCwu8seX55swcHUIec3bEmSyfY86VKTPGy0wWsuQZv0f2BctVJqQQ9--898gh4iWbjxIm5-Yh2ZNMG2242Cc_TsMmdhvoIYw0NnRcA30Pnr6d6g4mpG24-lrFfoCAbmxjWLBzlz63AWNosae929Ljb0PnZvjrekvPU9u7EZDWLlAPG-jiQD-MrurgtvHX959IX7UIDuERedC4DuHw-j4gn14ff1y9yc7enZyuXp5ldV7kYwaO6aIwzGsDrCq1N6YBJoTgSrKqct4pVRvJ66bmvjCu4cr7SruKMxCaMXlAXux0h6nqwdez5-Q6Oyz7pq2NrrV_V0K7thdxY7VUXJWLwLNrgRS_TICj7VusoetcgDihFbwwec5MyWf06T_oZZxSmO0tlNC6MIWZKbGj6hQREzQ3y3Bml5ztLmc752yvcraL9JO7Nm5a_qQ6A3IH4FwKF5BuZ_9H9jeVE7ai</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172667979</pqid></control><display><type>article</type><title>Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease</title><source>Springer Open Access</source><source>Nature Free</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Philippens, Ingrid H. C. H. M. ; Wubben, Jacqueline A. ; Franke, Sigrid K. ; Hofman, Sam ; Langermans, Jan A. M.</creator><creatorcontrib>Philippens, Ingrid H. C. H. M. ; Wubben, Jacqueline A. ; Franke, Sigrid K. ; Hofman, Sam ; Langermans, Jan A. M.</creatorcontrib><description>Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson’s disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, paradoxical movement and sensorimotor rhythm (SMR). Indeed, the size of the red nucleus, connecting the cerebellum with the cerebral cortex, is larger in Parkinson’s disease patients suggesting an increased activation of this brain area. Therefore, the red nucleus was examined in MPTP-induced parkinsonian marmoset monkeys during the presymptomatic stage and after SMR activation by neurofeedback training. We found a reverse significant correlation between the early expression of parkinsonian signs and the size of the parvocellular part of the red nucleus, which is predominantly present in human and non-human primates. In quadrupedal animals it consists mainly of the magnocellular part. Furthermore, SMR activation, that mitigated parkinsonian signs, further increased the size of the red nucleus in the marmoset monkey. This plasticity of the brain helps to compensate for dysfunctional movement control and can be a promising target for compensatory treatment with neurofeedback technology, vibrotactile stimulation or DBS in order to improve the quality of life for Parkinson’s disease patients.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-37381-1</identifier><identifier>PMID: 30696912</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 631/378/1689/1718 ; 692/617/375/1718 ; Basal ganglia ; Brain diseases ; Central nervous system diseases ; Cerebellar plasticity ; Cerebellum ; Cerebral cortex ; Compensation ; Feedback ; Humanities and Social Sciences ; Movement disorders ; MPTP ; multidisciplinary ; Neurodegeneration ; Parkinson's disease ; Patients ; Quality of life ; Red nucleus ; Science ; Science (multidisciplinary) ; Sensorimotor system ; Tactile stimuli ; Vibrations</subject><ispartof>Scientific reports, 2019-01, Vol.9 (1), p.880-880, Article 880</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ea067790d69e0b86d99fe02221530bbada55c931cfc1d79af15ddb6ab10e26003</citedby><cites>FETCH-LOGICAL-c474t-ea067790d69e0b86d99fe02221530bbada55c931cfc1d79af15ddb6ab10e26003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351580/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351580/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30696912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Philippens, Ingrid H. C. H. M.</creatorcontrib><creatorcontrib>Wubben, Jacqueline A.</creatorcontrib><creatorcontrib>Franke, Sigrid K.</creatorcontrib><creatorcontrib>Hofman, Sam</creatorcontrib><creatorcontrib>Langermans, Jan A. M.</creatorcontrib><title>Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson’s disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, paradoxical movement and sensorimotor rhythm (SMR). Indeed, the size of the red nucleus, connecting the cerebellum with the cerebral cortex, is larger in Parkinson’s disease patients suggesting an increased activation of this brain area. Therefore, the red nucleus was examined in MPTP-induced parkinsonian marmoset monkeys during the presymptomatic stage and after SMR activation by neurofeedback training. We found a reverse significant correlation between the early expression of parkinsonian signs and the size of the parvocellular part of the red nucleus, which is predominantly present in human and non-human primates. In quadrupedal animals it consists mainly of the magnocellular part. Furthermore, SMR activation, that mitigated parkinsonian signs, further increased the size of the red nucleus in the marmoset monkey. This plasticity of the brain helps to compensate for dysfunctional movement control and can be a promising target for compensatory treatment with neurofeedback technology, vibrotactile stimulation or DBS in order to improve the quality of life for Parkinson’s disease patients.</description><subject>13/51</subject><subject>631/378/1689/1718</subject><subject>692/617/375/1718</subject><subject>Basal ganglia</subject><subject>Brain diseases</subject><subject>Central nervous system diseases</subject><subject>Cerebellar plasticity</subject><subject>Cerebellum</subject><subject>Cerebral cortex</subject><subject>Compensation</subject><subject>Feedback</subject><subject>Humanities and Social Sciences</subject><subject>Movement disorders</subject><subject>MPTP</subject><subject>multidisciplinary</subject><subject>Neurodegeneration</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Quality of life</subject><subject>Red nucleus</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensorimotor system</subject><subject>Tactile stimuli</subject><subject>Vibrations</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1TAQhS0EolXpC7BAltiwSfFP7MQbJHQppVIFFT9ry4knvSmJHTzJhbtjwUvwejwJSW9pCwu8seX55swcHUIec3bEmSyfY86VKTPGy0wWsuQZv0f2BctVJqQQ9--898gh4iWbjxIm5-Yh2ZNMG2242Cc_TsMmdhvoIYw0NnRcA30Pnr6d6g4mpG24-lrFfoCAbmxjWLBzlz63AWNosae929Ljb0PnZvjrekvPU9u7EZDWLlAPG-jiQD-MrurgtvHX959IX7UIDuERedC4DuHw-j4gn14ff1y9yc7enZyuXp5ldV7kYwaO6aIwzGsDrCq1N6YBJoTgSrKqct4pVRvJ66bmvjCu4cr7SruKMxCaMXlAXux0h6nqwdez5-Q6Oyz7pq2NrrV_V0K7thdxY7VUXJWLwLNrgRS_TICj7VusoetcgDihFbwwec5MyWf06T_oZZxSmO0tlNC6MIWZKbGj6hQREzQ3y3Bml5ztLmc752yvcraL9JO7Nm5a_qQ6A3IH4FwKF5BuZ_9H9jeVE7ai</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Philippens, Ingrid H. C. H. M.</creator><creator>Wubben, Jacqueline A.</creator><creator>Franke, Sigrid K.</creator><creator>Hofman, Sam</creator><creator>Langermans, Jan A. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190129</creationdate><title>Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease</title><author>Philippens, Ingrid H. C. H. M. ; Wubben, Jacqueline A. ; Franke, Sigrid K. ; Hofman, Sam ; Langermans, Jan A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ea067790d69e0b86d99fe02221530bbada55c931cfc1d79af15ddb6ab10e26003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/51</topic><topic>631/378/1689/1718</topic><topic>692/617/375/1718</topic><topic>Basal ganglia</topic><topic>Brain diseases</topic><topic>Central nervous system diseases</topic><topic>Cerebellar plasticity</topic><topic>Cerebellum</topic><topic>Cerebral cortex</topic><topic>Compensation</topic><topic>Feedback</topic><topic>Humanities and Social Sciences</topic><topic>Movement disorders</topic><topic>MPTP</topic><topic>multidisciplinary</topic><topic>Neurodegeneration</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Quality of life</topic><topic>Red nucleus</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensorimotor system</topic><topic>Tactile stimuli</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Philippens, Ingrid H. C. H. M.</creatorcontrib><creatorcontrib>Wubben, Jacqueline A.</creatorcontrib><creatorcontrib>Franke, Sigrid K.</creatorcontrib><creatorcontrib>Hofman, Sam</creatorcontrib><creatorcontrib>Langermans, Jan A. M.</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philippens, Ingrid H. C. H. M.</au><au>Wubben, Jacqueline A.</au><au>Franke, Sigrid K.</au><au>Hofman, Sam</au><au>Langermans, Jan A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-01-29</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>880</spage><epage>880</epage><pages>880-880</pages><artnum>880</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson’s disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, paradoxical movement and sensorimotor rhythm (SMR). Indeed, the size of the red nucleus, connecting the cerebellum with the cerebral cortex, is larger in Parkinson’s disease patients suggesting an increased activation of this brain area. Therefore, the red nucleus was examined in MPTP-induced parkinsonian marmoset monkeys during the presymptomatic stage and after SMR activation by neurofeedback training. We found a reverse significant correlation between the early expression of parkinsonian signs and the size of the parvocellular part of the red nucleus, which is predominantly present in human and non-human primates. In quadrupedal animals it consists mainly of the magnocellular part. Furthermore, SMR activation, that mitigated parkinsonian signs, further increased the size of the red nucleus in the marmoset monkey. This plasticity of the brain helps to compensate for dysfunctional movement control and can be a promising target for compensatory treatment with neurofeedback technology, vibrotactile stimulation or DBS in order to improve the quality of life for Parkinson’s disease patients.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30696912</pmid><doi>10.1038/s41598-018-37381-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-01, Vol.9 (1), p.880-880, Article 880
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6351580
source Springer Open Access; Nature Free; PubMed Central; Directory of Open Access Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects 13/51
631/378/1689/1718
692/617/375/1718
Basal ganglia
Brain diseases
Central nervous system diseases
Cerebellar plasticity
Cerebellum
Cerebral cortex
Compensation
Feedback
Humanities and Social Sciences
Movement disorders
MPTP
multidisciplinary
Neurodegeneration
Parkinson's disease
Patients
Quality of life
Red nucleus
Science
Science (multidisciplinary)
Sensorimotor system
Tactile stimuli
Vibrations
title Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20the%20Red%20Nucleus%20in%20the%20Compensation%20of%20Parkinsonism%20may%20Explain%20why%20Primates%20can%20develop%20Stable%20Parkinson%E2%80%99s%20Disease&rft.jtitle=Scientific%20reports&rft.au=Philippens,%20Ingrid%20H.%20C.%20H.%20M.&rft.date=2019-01-29&rft.volume=9&rft.issue=1&rft.spage=880&rft.epage=880&rft.pages=880-880&rft.artnum=880&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-37381-1&rft_dat=%3Cproquest_pubme%3E2179440981%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172667979&rft_id=info:pmid/30696912&rfr_iscdi=true