Confinement induces helical organization of chromosome-like polymers

Helical organization is commonly observed for a variety of biopolymers. Here we study the helical organization of two types of biopolymers, i.e., DNA-like semiflexible and bottle-brush polymers, in a cell-like confined space. A bottle-brush polymer consists of a backbone and side chains emanating fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-01, Vol.9 (1), p.869-869, Article 869
Hauptverfasser: Jung, Youngkyun, Ha, Bae-Yeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 1
container_start_page 869
container_title Scientific reports
container_volume 9
creator Jung, Youngkyun
Ha, Bae-Yeun
description Helical organization is commonly observed for a variety of biopolymers. Here we study the helical organization of two types of biopolymers, i.e., DNA-like semiflexible and bottle-brush polymers, in a cell-like confined space. A bottle-brush polymer consists of a backbone and side chains emanating from the backbone, resembling a supercoiled bacterial chromosome. Using computer simulations, we calculate ‘writhe’ distributions of confined biopolymers for a wide range of parameters. Our effort clarifies the conditions under which biopolymers are helically organized. While helical organization is not easily realized for DNA-like biomolecules, cylindrical confinement can induce spiral patterns in a bottle brush, similarly to what was observed with bacterial chromosomes. They also suggest that ring-shape bottle brushes have a stronger tendency for helical organization. We discuss how our results can be used to interpret chromosome experiments. For instance, they suggest that experimental resolution has unexpected consequences on writhe measurements (e.g., narrowing of the writhe distribution and kinetic separation of opposite helical states).
doi_str_mv 10.1038/s41598-018-37261-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6351567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179430883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d8bb30a6564315b12fc4ee0c6560fb1f24e4c2f3843938eab80f39c0db136e73</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoKto_4EEWvHhZzddmsxdB6icIXryHbDppo7tJTbqC_npTq_Xj4FwyZJ55Z4YXoQOCTwhm8jRxUjWyxESWrKaClHID7VLMq5IySjd_5DtolNIjzlHRhpNmG-0wLBohJd9FF-PgrfPQg18Uzk8GA6mYQeeM7ooQp9q7N71wwRfBFmYWQx9S6KHs3BMU89C99hDTPtqyuksw-nz30MPV5cP4pry7v74dn9-Vhtd8UU5k2zKsRSU4I1VLqDUcAJv8gW1LLOXADbVMctYwCbqV2LLG4ElLmICa7aGzlex8aHuYmLxy1J2aR9fr-KqCdup3xbuZmoYXJVhFKrEUOP4UiOF5gLRQvUsGuk57CENSlNQNZ1hKltGjP-hjGKLP1y0pKkRdc5IpuqJMDClFsOtlCFZLm9TKJpVtUh82KZmbDn-esW75MiUDbAWkXPJTiN-z_5F9B8W_nns</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172667741</pqid></control><display><type>article</type><title>Confinement induces helical organization of chromosome-like polymers</title><source>Open Access: PubMed Central</source><source>Springer Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jung, Youngkyun ; Ha, Bae-Yeun</creator><creatorcontrib>Jung, Youngkyun ; Ha, Bae-Yeun</creatorcontrib><description>Helical organization is commonly observed for a variety of biopolymers. Here we study the helical organization of two types of biopolymers, i.e., DNA-like semiflexible and bottle-brush polymers, in a cell-like confined space. A bottle-brush polymer consists of a backbone and side chains emanating from the backbone, resembling a supercoiled bacterial chromosome. Using computer simulations, we calculate ‘writhe’ distributions of confined biopolymers for a wide range of parameters. Our effort clarifies the conditions under which biopolymers are helically organized. While helical organization is not easily realized for DNA-like biomolecules, cylindrical confinement can induce spiral patterns in a bottle brush, similarly to what was observed with bacterial chromosomes. They also suggest that ring-shape bottle brushes have a stronger tendency for helical organization. We discuss how our results can be used to interpret chromosome experiments. For instance, they suggest that experimental resolution has unexpected consequences on writhe measurements (e.g., narrowing of the writhe distribution and kinetic separation of opposite helical states).</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-37261-8</identifier><identifier>PMID: 30696884</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/747 ; 639/766/94 ; Biopolymers ; Chromosomes ; Confined spaces ; Deoxyribonucleic acid ; DNA ; Humanities and Social Sciences ; Mathematical models ; multidisciplinary ; Polymers ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-01, Vol.9 (1), p.869-869, Article 869</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d8bb30a6564315b12fc4ee0c6560fb1f24e4c2f3843938eab80f39c0db136e73</citedby><cites>FETCH-LOGICAL-c474t-d8bb30a6564315b12fc4ee0c6560fb1f24e4c2f3843938eab80f39c0db136e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351567/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30696884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Youngkyun</creatorcontrib><creatorcontrib>Ha, Bae-Yeun</creatorcontrib><title>Confinement induces helical organization of chromosome-like polymers</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Helical organization is commonly observed for a variety of biopolymers. Here we study the helical organization of two types of biopolymers, i.e., DNA-like semiflexible and bottle-brush polymers, in a cell-like confined space. A bottle-brush polymer consists of a backbone and side chains emanating from the backbone, resembling a supercoiled bacterial chromosome. Using computer simulations, we calculate ‘writhe’ distributions of confined biopolymers for a wide range of parameters. Our effort clarifies the conditions under which biopolymers are helically organized. While helical organization is not easily realized for DNA-like biomolecules, cylindrical confinement can induce spiral patterns in a bottle brush, similarly to what was observed with bacterial chromosomes. They also suggest that ring-shape bottle brushes have a stronger tendency for helical organization. We discuss how our results can be used to interpret chromosome experiments. For instance, they suggest that experimental resolution has unexpected consequences on writhe measurements (e.g., narrowing of the writhe distribution and kinetic separation of opposite helical states).</description><subject>639/766/747</subject><subject>639/766/94</subject><subject>Biopolymers</subject><subject>Chromosomes</subject><subject>Confined spaces</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Humanities and Social Sciences</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Polymers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1LAzEQhoMoKto_4EEWvHhZzddmsxdB6icIXryHbDppo7tJTbqC_npTq_Xj4FwyZJ55Z4YXoQOCTwhm8jRxUjWyxESWrKaClHID7VLMq5IySjd_5DtolNIjzlHRhpNmG-0wLBohJd9FF-PgrfPQg18Uzk8GA6mYQeeM7ooQp9q7N71wwRfBFmYWQx9S6KHs3BMU89C99hDTPtqyuksw-nz30MPV5cP4pry7v74dn9-Vhtd8UU5k2zKsRSU4I1VLqDUcAJv8gW1LLOXADbVMctYwCbqV2LLG4ElLmICa7aGzlex8aHuYmLxy1J2aR9fr-KqCdup3xbuZmoYXJVhFKrEUOP4UiOF5gLRQvUsGuk57CENSlNQNZ1hKltGjP-hjGKLP1y0pKkRdc5IpuqJMDClFsOtlCFZLm9TKJpVtUh82KZmbDn-esW75MiUDbAWkXPJTiN-z_5F9B8W_nns</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Jung, Youngkyun</creator><creator>Ha, Bae-Yeun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190129</creationdate><title>Confinement induces helical organization of chromosome-like polymers</title><author>Jung, Youngkyun ; Ha, Bae-Yeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d8bb30a6564315b12fc4ee0c6560fb1f24e4c2f3843938eab80f39c0db136e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/747</topic><topic>639/766/94</topic><topic>Biopolymers</topic><topic>Chromosomes</topic><topic>Confined spaces</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Humanities and Social Sciences</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Polymers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Youngkyun</creatorcontrib><creatorcontrib>Ha, Bae-Yeun</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Youngkyun</au><au>Ha, Bae-Yeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confinement induces helical organization of chromosome-like polymers</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-01-29</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>869</spage><epage>869</epage><pages>869-869</pages><artnum>869</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Helical organization is commonly observed for a variety of biopolymers. Here we study the helical organization of two types of biopolymers, i.e., DNA-like semiflexible and bottle-brush polymers, in a cell-like confined space. A bottle-brush polymer consists of a backbone and side chains emanating from the backbone, resembling a supercoiled bacterial chromosome. Using computer simulations, we calculate ‘writhe’ distributions of confined biopolymers for a wide range of parameters. Our effort clarifies the conditions under which biopolymers are helically organized. While helical organization is not easily realized for DNA-like biomolecules, cylindrical confinement can induce spiral patterns in a bottle brush, similarly to what was observed with bacterial chromosomes. They also suggest that ring-shape bottle brushes have a stronger tendency for helical organization. We discuss how our results can be used to interpret chromosome experiments. For instance, they suggest that experimental resolution has unexpected consequences on writhe measurements (e.g., narrowing of the writhe distribution and kinetic separation of opposite helical states).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30696884</pmid><doi>10.1038/s41598-018-37261-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-01, Vol.9 (1), p.869-869, Article 869
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6351567
source Open Access: PubMed Central; Springer Open Access; DOAJ Directory of Open Access Journals; Nature Journals Online; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 639/766/747
639/766/94
Biopolymers
Chromosomes
Confined spaces
Deoxyribonucleic acid
DNA
Humanities and Social Sciences
Mathematical models
multidisciplinary
Polymers
Science
Science (multidisciplinary)
title Confinement induces helical organization of chromosome-like polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confinement%20induces%20helical%20organization%20of%20chromosome-like%20polymers&rft.jtitle=Scientific%20reports&rft.au=Jung,%20Youngkyun&rft.date=2019-01-29&rft.volume=9&rft.issue=1&rft.spage=869&rft.epage=869&rft.pages=869-869&rft.artnum=869&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-37261-8&rft_dat=%3Cproquest_pubme%3E2179430883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172667741&rft_id=info:pmid/30696884&rfr_iscdi=true