TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition

Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2019-02, Vol.23 (2), p.761-774
Hauptverfasser: Sharma, Shweta, Goswami, Rishov, Zhang, David X., Rahaman, Shaik O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 2
container_start_page 761
container_title Journal of cellular and molecular medicine
container_volume 23
creator Sharma, Shweta
Goswami, Rishov
Zhang, David X.
Rahaman, Shaik O.
description Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.
doi_str_mv 10.1111/jcmm.13972
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6349341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JCMM13972</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3252-b5441bbab842f878f5695964cba2ee3f7cdbd4ab1ce336f70231693232de6c1c3</originalsourceid><addsrcrecordid>eNpVkE1OwzAQhS0EoqWw4QAoF0iJf-IkGyRU0QJqBUIFiZVlO5PWVeJWcQJ0xxE4CwfhEJyE9IcKZjOjeW-eRh9Cpzjo4qbOZ7ooupgmEdlDbRzGxGcJZfvbGcc0bqEj52ZBQHljO0QtGrAwiHjURs_jh_sn5pUwqXNZgfMKWZXmzXOVyTILznnSpt540P_6xN_vH8amtYbUg4WpppAbmTfLAhxYPV0WMveqUlpnKjO3x-ggk7mDk23voMf-1bh37Q_vBje9y6E_oyQkvgoZw0pJFTOSxVGchTwJE860kgSAZpFOVcqkwhoo5VkUEIp5QgklKXCNNe2gi03uolYFpBps80MuFqUpZLkUc2nEf8WaqZjMXwSnK0y4CTj7G7C7_IXUGPDG8GpyWO50HIgVfrHCL9b4xW1vNFpP9AcrVX19</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sharma, Shweta ; Goswami, Rishov ; Zhang, David X. ; Rahaman, Shaik O.</creator><creatorcontrib>Sharma, Shweta ; Goswami, Rishov ; Zhang, David X. ; Rahaman, Shaik O.</creatorcontrib><description>Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.13972</identifier><identifier>PMID: 30450767</identifier><language>eng</language><publisher>England: John Wiley and Sons Inc</publisher><subject>Actins - genetics ; Actins - metabolism ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Bleomycin - administration &amp; dosage ; Cadherins - genetics ; Cadherins - metabolism ; calcium ; Cell Adhesion - drug effects ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Movement - drug effects ; Epidermis - drug effects ; Epidermis - metabolism ; Epidermis - pathology ; Epithelial-Mesenchymal Transition - drug effects ; Epithelial-Mesenchymal Transition - genetics ; epithelial‐mesenchymal transition ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; Fibrosis - chemically induced ; Gene Expression Regulation ; Humans ; keratinocytes ; Keratinocytes - cytology ; Keratinocytes - drug effects ; Keratinocytes - metabolism ; matrix stiffness ; Mechanotransduction, Cellular ; Mice ; Original ; Primary Cell Culture ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Smad2 Protein - genetics ; Smad2 Protein - metabolism ; Smad3 Protein - genetics ; Smad3 Protein - metabolism ; TAZ ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transforming Growth Factor beta1 - pharmacology ; TRPV Cation Channels - antagonists &amp; inhibitors ; TRPV Cation Channels - deficiency ; TRPV Cation Channels - genetics ; TRPV4 ; YAP</subject><ispartof>Journal of cellular and molecular medicine, 2019-02, Vol.23 (2), p.761-774</ispartof><rights>2018 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2018 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6481-392X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349341/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349341/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30450767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Shweta</creatorcontrib><creatorcontrib>Goswami, Rishov</creatorcontrib><creatorcontrib>Zhang, David X.</creatorcontrib><creatorcontrib>Rahaman, Shaik O.</creatorcontrib><title>TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.</description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Bleomycin - administration &amp; dosage</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>calcium</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Movement - drug effects</subject><subject>Epidermis - drug effects</subject><subject>Epidermis - metabolism</subject><subject>Epidermis - pathology</subject><subject>Epithelial-Mesenchymal Transition - drug effects</subject><subject>Epithelial-Mesenchymal Transition - genetics</subject><subject>epithelial‐mesenchymal transition</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibrosis - chemically induced</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>keratinocytes</subject><subject>Keratinocytes - cytology</subject><subject>Keratinocytes - drug effects</subject><subject>Keratinocytes - metabolism</subject><subject>matrix stiffness</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Original</subject><subject>Primary Cell Culture</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Smad2 Protein - genetics</subject><subject>Smad2 Protein - metabolism</subject><subject>Smad3 Protein - genetics</subject><subject>Smad3 Protein - metabolism</subject><subject>TAZ</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transforming Growth Factor beta1 - pharmacology</subject><subject>TRPV Cation Channels - antagonists &amp; inhibitors</subject><subject>TRPV Cation Channels - deficiency</subject><subject>TRPV Cation Channels - genetics</subject><subject>TRPV4</subject><subject>YAP</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNpVkE1OwzAQhS0EoqWw4QAoF0iJf-IkGyRU0QJqBUIFiZVlO5PWVeJWcQJ0xxE4CwfhEJyE9IcKZjOjeW-eRh9Cpzjo4qbOZ7ooupgmEdlDbRzGxGcJZfvbGcc0bqEj52ZBQHljO0QtGrAwiHjURs_jh_sn5pUwqXNZgfMKWZXmzXOVyTILznnSpt540P_6xN_vH8amtYbUg4WpppAbmTfLAhxYPV0WMveqUlpnKjO3x-ggk7mDk23voMf-1bh37Q_vBje9y6E_oyQkvgoZw0pJFTOSxVGchTwJE860kgSAZpFOVcqkwhoo5VkUEIp5QgklKXCNNe2gi03uolYFpBps80MuFqUpZLkUc2nEf8WaqZjMXwSnK0y4CTj7G7C7_IXUGPDG8GpyWO50HIgVfrHCL9b4xW1vNFpP9AcrVX19</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Sharma, Shweta</creator><creator>Goswami, Rishov</creator><creator>Zhang, David X.</creator><creator>Rahaman, Shaik O.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6481-392X</orcidid></search><sort><creationdate>201902</creationdate><title>TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition</title><author>Sharma, Shweta ; Goswami, Rishov ; Zhang, David X. ; Rahaman, Shaik O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3252-b5441bbab842f878f5695964cba2ee3f7cdbd4ab1ce336f70231693232de6c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Bleomycin - administration &amp; dosage</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>calcium</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Movement - drug effects</topic><topic>Epidermis - drug effects</topic><topic>Epidermis - metabolism</topic><topic>Epidermis - pathology</topic><topic>Epithelial-Mesenchymal Transition - drug effects</topic><topic>Epithelial-Mesenchymal Transition - genetics</topic><topic>epithelial‐mesenchymal transition</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibrosis - chemically induced</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>keratinocytes</topic><topic>Keratinocytes - cytology</topic><topic>Keratinocytes - drug effects</topic><topic>Keratinocytes - metabolism</topic><topic>matrix stiffness</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Original</topic><topic>Primary Cell Culture</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Smad2 Protein - genetics</topic><topic>Smad2 Protein - metabolism</topic><topic>Smad3 Protein - genetics</topic><topic>Smad3 Protein - metabolism</topic><topic>TAZ</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transforming Growth Factor beta1 - pharmacology</topic><topic>TRPV Cation Channels - antagonists &amp; inhibitors</topic><topic>TRPV Cation Channels - deficiency</topic><topic>TRPV Cation Channels - genetics</topic><topic>TRPV4</topic><topic>YAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Shweta</creatorcontrib><creatorcontrib>Goswami, Rishov</creatorcontrib><creatorcontrib>Zhang, David X.</creatorcontrib><creatorcontrib>Rahaman, Shaik O.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Shweta</au><au>Goswami, Rishov</au><au>Zhang, David X.</au><au>Rahaman, Shaik O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2019-02</date><risdate>2019</risdate><volume>23</volume><issue>2</issue><spage>761</spage><epage>774</epage><pages>761-774</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.</abstract><cop>England</cop><pub>John Wiley and Sons Inc</pub><pmid>30450767</pmid><doi>10.1111/jcmm.13972</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6481-392X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2019-02, Vol.23 (2), p.761-774
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6349341
source MEDLINE; Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Actins - genetics
Actins - metabolism
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Bleomycin - administration & dosage
Cadherins - genetics
Cadherins - metabolism
calcium
Cell Adhesion - drug effects
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Movement - drug effects
Epidermis - drug effects
Epidermis - metabolism
Epidermis - pathology
Epithelial-Mesenchymal Transition - drug effects
Epithelial-Mesenchymal Transition - genetics
epithelial‐mesenchymal transition
Extracellular Matrix - drug effects
Extracellular Matrix - metabolism
Fibrosis - chemically induced
Gene Expression Regulation
Humans
keratinocytes
Keratinocytes - cytology
Keratinocytes - drug effects
Keratinocytes - metabolism
matrix stiffness
Mechanotransduction, Cellular
Mice
Original
Primary Cell Culture
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Smad2 Protein - genetics
Smad2 Protein - metabolism
Smad3 Protein - genetics
Smad3 Protein - metabolism
TAZ
Trans-Activators - genetics
Trans-Activators - metabolism
Transforming Growth Factor beta1 - pharmacology
TRPV Cation Channels - antagonists & inhibitors
TRPV Cation Channels - deficiency
TRPV Cation Channels - genetics
TRPV4
YAP
title TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRPV4%20regulates%20matrix%20stiffness%20and%20TGF%CE%B21%E2%80%90induced%20epithelial%E2%80%90mesenchymal%20transition&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Sharma,%20Shweta&rft.date=2019-02&rft.volume=23&rft.issue=2&rft.spage=761&rft.epage=774&rft.pages=761-774&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.13972&rft_dat=%3Cwiley_pubme%3EJCMM13972%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30450767&rfr_iscdi=true