TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition
Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth fact...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2019-02, Vol.23 (2), p.761-774 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 2 |
container_start_page | 761 |
container_title | Journal of cellular and molecular medicine |
container_volume | 23 |
creator | Sharma, Shweta Goswami, Rishov Zhang, David X. Rahaman, Shaik O. |
description | Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT. |
doi_str_mv | 10.1111/jcmm.13972 |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6349341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JCMM13972</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3252-b5441bbab842f878f5695964cba2ee3f7cdbd4ab1ce336f70231693232de6c1c3</originalsourceid><addsrcrecordid>eNpVkE1OwzAQhS0EoqWw4QAoF0iJf-IkGyRU0QJqBUIFiZVlO5PWVeJWcQJ0xxE4CwfhEJyE9IcKZjOjeW-eRh9Cpzjo4qbOZ7ooupgmEdlDbRzGxGcJZfvbGcc0bqEj52ZBQHljO0QtGrAwiHjURs_jh_sn5pUwqXNZgfMKWZXmzXOVyTILznnSpt540P_6xN_vH8amtYbUg4WpppAbmTfLAhxYPV0WMveqUlpnKjO3x-ggk7mDk23voMf-1bh37Q_vBje9y6E_oyQkvgoZw0pJFTOSxVGchTwJE860kgSAZpFOVcqkwhoo5VkUEIp5QgklKXCNNe2gi03uolYFpBps80MuFqUpZLkUc2nEf8WaqZjMXwSnK0y4CTj7G7C7_IXUGPDG8GpyWO50HIgVfrHCL9b4xW1vNFpP9AcrVX19</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sharma, Shweta ; Goswami, Rishov ; Zhang, David X. ; Rahaman, Shaik O.</creator><creatorcontrib>Sharma, Shweta ; Goswami, Rishov ; Zhang, David X. ; Rahaman, Shaik O.</creatorcontrib><description>Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.13972</identifier><identifier>PMID: 30450767</identifier><language>eng</language><publisher>England: John Wiley and Sons Inc</publisher><subject>Actins - genetics ; Actins - metabolism ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Bleomycin - administration & dosage ; Cadherins - genetics ; Cadherins - metabolism ; calcium ; Cell Adhesion - drug effects ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Movement - drug effects ; Epidermis - drug effects ; Epidermis - metabolism ; Epidermis - pathology ; Epithelial-Mesenchymal Transition - drug effects ; Epithelial-Mesenchymal Transition - genetics ; epithelial‐mesenchymal transition ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; Fibrosis - chemically induced ; Gene Expression Regulation ; Humans ; keratinocytes ; Keratinocytes - cytology ; Keratinocytes - drug effects ; Keratinocytes - metabolism ; matrix stiffness ; Mechanotransduction, Cellular ; Mice ; Original ; Primary Cell Culture ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Smad2 Protein - genetics ; Smad2 Protein - metabolism ; Smad3 Protein - genetics ; Smad3 Protein - metabolism ; TAZ ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transforming Growth Factor beta1 - pharmacology ; TRPV Cation Channels - antagonists & inhibitors ; TRPV Cation Channels - deficiency ; TRPV Cation Channels - genetics ; TRPV4 ; YAP</subject><ispartof>Journal of cellular and molecular medicine, 2019-02, Vol.23 (2), p.761-774</ispartof><rights>2018 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2018 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6481-392X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349341/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349341/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30450767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Shweta</creatorcontrib><creatorcontrib>Goswami, Rishov</creatorcontrib><creatorcontrib>Zhang, David X.</creatorcontrib><creatorcontrib>Rahaman, Shaik O.</creatorcontrib><title>TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.</description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Bleomycin - administration & dosage</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>calcium</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Movement - drug effects</subject><subject>Epidermis - drug effects</subject><subject>Epidermis - metabolism</subject><subject>Epidermis - pathology</subject><subject>Epithelial-Mesenchymal Transition - drug effects</subject><subject>Epithelial-Mesenchymal Transition - genetics</subject><subject>epithelial‐mesenchymal transition</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibrosis - chemically induced</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>keratinocytes</subject><subject>Keratinocytes - cytology</subject><subject>Keratinocytes - drug effects</subject><subject>Keratinocytes - metabolism</subject><subject>matrix stiffness</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Original</subject><subject>Primary Cell Culture</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Smad2 Protein - genetics</subject><subject>Smad2 Protein - metabolism</subject><subject>Smad3 Protein - genetics</subject><subject>Smad3 Protein - metabolism</subject><subject>TAZ</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transforming Growth Factor beta1 - pharmacology</subject><subject>TRPV Cation Channels - antagonists & inhibitors</subject><subject>TRPV Cation Channels - deficiency</subject><subject>TRPV Cation Channels - genetics</subject><subject>TRPV4</subject><subject>YAP</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNpVkE1OwzAQhS0EoqWw4QAoF0iJf-IkGyRU0QJqBUIFiZVlO5PWVeJWcQJ0xxE4CwfhEJyE9IcKZjOjeW-eRh9Cpzjo4qbOZ7ooupgmEdlDbRzGxGcJZfvbGcc0bqEj52ZBQHljO0QtGrAwiHjURs_jh_sn5pUwqXNZgfMKWZXmzXOVyTILznnSpt540P_6xN_vH8amtYbUg4WpppAbmTfLAhxYPV0WMveqUlpnKjO3x-ggk7mDk23voMf-1bh37Q_vBje9y6E_oyQkvgoZw0pJFTOSxVGchTwJE860kgSAZpFOVcqkwhoo5VkUEIp5QgklKXCNNe2gi03uolYFpBps80MuFqUpZLkUc2nEf8WaqZjMXwSnK0y4CTj7G7C7_IXUGPDG8GpyWO50HIgVfrHCL9b4xW1vNFpP9AcrVX19</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Sharma, Shweta</creator><creator>Goswami, Rishov</creator><creator>Zhang, David X.</creator><creator>Rahaman, Shaik O.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6481-392X</orcidid></search><sort><creationdate>201902</creationdate><title>TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition</title><author>Sharma, Shweta ; Goswami, Rishov ; Zhang, David X. ; Rahaman, Shaik O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3252-b5441bbab842f878f5695964cba2ee3f7cdbd4ab1ce336f70231693232de6c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Bleomycin - administration & dosage</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>calcium</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Movement - drug effects</topic><topic>Epidermis - drug effects</topic><topic>Epidermis - metabolism</topic><topic>Epidermis - pathology</topic><topic>Epithelial-Mesenchymal Transition - drug effects</topic><topic>Epithelial-Mesenchymal Transition - genetics</topic><topic>epithelial‐mesenchymal transition</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibrosis - chemically induced</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>keratinocytes</topic><topic>Keratinocytes - cytology</topic><topic>Keratinocytes - drug effects</topic><topic>Keratinocytes - metabolism</topic><topic>matrix stiffness</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Original</topic><topic>Primary Cell Culture</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Smad2 Protein - genetics</topic><topic>Smad2 Protein - metabolism</topic><topic>Smad3 Protein - genetics</topic><topic>Smad3 Protein - metabolism</topic><topic>TAZ</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transforming Growth Factor beta1 - pharmacology</topic><topic>TRPV Cation Channels - antagonists & inhibitors</topic><topic>TRPV Cation Channels - deficiency</topic><topic>TRPV Cation Channels - genetics</topic><topic>TRPV4</topic><topic>YAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Shweta</creatorcontrib><creatorcontrib>Goswami, Rishov</creatorcontrib><creatorcontrib>Zhang, David X.</creatorcontrib><creatorcontrib>Rahaman, Shaik O.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Shweta</au><au>Goswami, Rishov</au><au>Zhang, David X.</au><au>Rahaman, Shaik O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2019-02</date><risdate>2019</risdate><volume>23</volume><issue>2</issue><spage>761</spage><epage>774</epage><pages>761-774</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.</abstract><cop>England</cop><pub>John Wiley and Sons Inc</pub><pmid>30450767</pmid><doi>10.1111/jcmm.13972</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6481-392X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2019-02, Vol.23 (2), p.761-774 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6349341 |
source | MEDLINE; Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Actins - genetics Actins - metabolism Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Bleomycin - administration & dosage Cadherins - genetics Cadherins - metabolism calcium Cell Adhesion - drug effects Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Movement - drug effects Epidermis - drug effects Epidermis - metabolism Epidermis - pathology Epithelial-Mesenchymal Transition - drug effects Epithelial-Mesenchymal Transition - genetics epithelial‐mesenchymal transition Extracellular Matrix - drug effects Extracellular Matrix - metabolism Fibrosis - chemically induced Gene Expression Regulation Humans keratinocytes Keratinocytes - cytology Keratinocytes - drug effects Keratinocytes - metabolism matrix stiffness Mechanotransduction, Cellular Mice Original Primary Cell Culture Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism Smad2 Protein - genetics Smad2 Protein - metabolism Smad3 Protein - genetics Smad3 Protein - metabolism TAZ Trans-Activators - genetics Trans-Activators - metabolism Transforming Growth Factor beta1 - pharmacology TRPV Cation Channels - antagonists & inhibitors TRPV Cation Channels - deficiency TRPV Cation Channels - genetics TRPV4 YAP |
title | TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRPV4%20regulates%20matrix%20stiffness%20and%20TGF%CE%B21%E2%80%90induced%20epithelial%E2%80%90mesenchymal%20transition&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Sharma,%20Shweta&rft.date=2019-02&rft.volume=23&rft.issue=2&rft.spage=761&rft.epage=774&rft.pages=761-774&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.13972&rft_dat=%3Cwiley_pubme%3EJCMM13972%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30450767&rfr_iscdi=true |