Endogenous reduction of miR‐185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the r...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2019-02, Vol.23 (2), p.1164-1173 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1173 |
---|---|
container_issue | 2 |
container_start_page | 1164 |
container_title | Journal of cellular and molecular medicine |
container_volume | 23 |
creator | Li, Chuan‐Chang Qiu, Xue‐Ting Sun, Quan Zhou, Ji‐Peng Yang, Hui‐Jun Wu, Wan‐Zhou He, Ling‐Fang Tang, Can‐E Zhang, Guo‐Gang Bai, Yong‐Ping |
description | Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI. |
doi_str_mv | 10.1111/jcmm.14016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6349160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135637165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5406-c94532ab12500ab450a3797bb5cb4d17ffe24acea51002ea1d0ff2dbd090eec63</originalsourceid><addsrcrecordid>eNp9kcuKFDEUhoMozkU3PoAE3IjQY1JJ6rIRhma8ziCIrsOp1ElPmqqkTap66J0PMAuf0ScxbbWDujCbBM73_znn_IQ84eyM5_NybYbhjEvGy3vkmKu6WMhGyPuHN69FfUROUlozJkoumofkSDCpWFWoY3J74buwQh-mRCN2kxld8DRYOrhPP75957WiYAz2GGHERA3EzoGhdvIzGdGELcYddT5LDFIb-j7cOL-iwy7MeJ-LFuIs2DqgI8QVjnsmf2RgvMZNyvoPj8gDC33Cx4f7lHx5ffF5-XZx-fHNu-X55cIoycqFaaQSBbS8UIxBm0cBUTVV2yrTyo5X1mIhwSAozliBwDtmbdG1HWsYoinFKXk1-26mdsDOoB8j9HoT3QBxpwM4_XfFu2u9CltdCtnwkmWD5weDGL5OmEY9uJS31IPHvEldcKFKUfFSZfTZP-g6TNHn8TKViboUxd7wxUyZGFKKaO-a4UzvQ9b7kPWvkDP89M_279DfqWaAz8CN63H3Hyv9fnl1NZv-BJEhtls</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2171686320</pqid></control><display><type>article</type><title>Endogenous reduction of miR‐185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Chuan‐Chang ; Qiu, Xue‐Ting ; Sun, Quan ; Zhou, Ji‐Peng ; Yang, Hui‐Jun ; Wu, Wan‐Zhou ; He, Ling‐Fang ; Tang, Can‐E ; Zhang, Guo‐Gang ; Bai, Yong‐Ping</creator><creatorcontrib>Li, Chuan‐Chang ; Qiu, Xue‐Ting ; Sun, Quan ; Zhou, Ji‐Peng ; Yang, Hui‐Jun ; Wu, Wan‐Zhou ; He, Ling‐Fang ; Tang, Can‐E ; Zhang, Guo‐Gang ; Bai, Yong‐Ping</creatorcontrib><description>Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.14016</identifier><identifier>PMID: 30450725</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>acute coronary syndrome ; Acute Coronary Syndrome - genetics ; Acute Coronary Syndrome - pathology ; Acute coronary syndromes ; Angiogenesis ; Animals ; Cardiac function ; Cathepsin K ; Cathepsin K - genetics ; Cell Line ; Cell Proliferation - genetics ; Computer applications ; Down-Regulation - genetics ; Endothelial cells ; Endothelial Cells - pathology ; Fluorescence ; Gene expression ; Gene Expression - genetics ; Gene silencing ; Heart ; Heart attacks ; Human Umbilical Vein Endothelial Cells ; Humans ; Hybridization ; Hypoxia ; Hypoxia - genetics ; Infarction ; Mice ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; MiR‐185 ; Myocardial infarction ; Myocardial Infarction - genetics ; Myocardium ; Myocardium - pathology ; Myocytes, Cardiac - pathology ; Original ; Recovery of Function - genetics ; Regulators ; Reporter gene ; RNA, Messenger - genetics ; Umbilical vein ; Up-Regulation - genetics</subject><ispartof>Journal of cellular and molecular medicine, 2019-02, Vol.23 (2), p.1164-1173</ispartof><rights>2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5406-c94532ab12500ab450a3797bb5cb4d17ffe24acea51002ea1d0ff2dbd090eec63</citedby><cites>FETCH-LOGICAL-c5406-c94532ab12500ab450a3797bb5cb4d17ffe24acea51002ea1d0ff2dbd090eec63</cites><orcidid>0000-0002-6062-9295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349160/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349160/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30450725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chuan‐Chang</creatorcontrib><creatorcontrib>Qiu, Xue‐Ting</creatorcontrib><creatorcontrib>Sun, Quan</creatorcontrib><creatorcontrib>Zhou, Ji‐Peng</creatorcontrib><creatorcontrib>Yang, Hui‐Jun</creatorcontrib><creatorcontrib>Wu, Wan‐Zhou</creatorcontrib><creatorcontrib>He, Ling‐Fang</creatorcontrib><creatorcontrib>Tang, Can‐E</creatorcontrib><creatorcontrib>Zhang, Guo‐Gang</creatorcontrib><creatorcontrib>Bai, Yong‐Ping</creatorcontrib><title>Endogenous reduction of miR‐185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.</description><subject>acute coronary syndrome</subject><subject>Acute Coronary Syndrome - genetics</subject><subject>Acute Coronary Syndrome - pathology</subject><subject>Acute coronary syndromes</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Cardiac function</subject><subject>Cathepsin K</subject><subject>Cathepsin K - genetics</subject><subject>Cell Line</subject><subject>Cell Proliferation - genetics</subject><subject>Computer applications</subject><subject>Down-Regulation - genetics</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - pathology</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene Expression - genetics</subject><subject>Gene silencing</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Hybridization</subject><subject>Hypoxia</subject><subject>Hypoxia - genetics</subject><subject>Infarction</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>MiR‐185</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - genetics</subject><subject>Myocardium</subject><subject>Myocardium - pathology</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Original</subject><subject>Recovery of Function - genetics</subject><subject>Regulators</subject><subject>Reporter gene</subject><subject>RNA, Messenger - genetics</subject><subject>Umbilical vein</subject><subject>Up-Regulation - genetics</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kcuKFDEUhoMozkU3PoAE3IjQY1JJ6rIRhma8ziCIrsOp1ElPmqqkTap66J0PMAuf0ScxbbWDujCbBM73_znn_IQ84eyM5_NybYbhjEvGy3vkmKu6WMhGyPuHN69FfUROUlozJkoumofkSDCpWFWoY3J74buwQh-mRCN2kxld8DRYOrhPP75957WiYAz2GGHERA3EzoGhdvIzGdGELcYddT5LDFIb-j7cOL-iwy7MeJ-LFuIs2DqgI8QVjnsmf2RgvMZNyvoPj8gDC33Cx4f7lHx5ffF5-XZx-fHNu-X55cIoycqFaaQSBbS8UIxBm0cBUTVV2yrTyo5X1mIhwSAozliBwDtmbdG1HWsYoinFKXk1-26mdsDOoB8j9HoT3QBxpwM4_XfFu2u9CltdCtnwkmWD5weDGL5OmEY9uJS31IPHvEldcKFKUfFSZfTZP-g6TNHn8TKViboUxd7wxUyZGFKKaO-a4UzvQ9b7kPWvkDP89M_279DfqWaAz8CN63H3Hyv9fnl1NZv-BJEhtls</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Li, Chuan‐Chang</creator><creator>Qiu, Xue‐Ting</creator><creator>Sun, Quan</creator><creator>Zhou, Ji‐Peng</creator><creator>Yang, Hui‐Jun</creator><creator>Wu, Wan‐Zhou</creator><creator>He, Ling‐Fang</creator><creator>Tang, Can‐E</creator><creator>Zhang, Guo‐Gang</creator><creator>Bai, Yong‐Ping</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6062-9295</orcidid></search><sort><creationdate>201902</creationdate><title>Endogenous reduction of miR‐185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K</title><author>Li, Chuan‐Chang ; Qiu, Xue‐Ting ; Sun, Quan ; Zhou, Ji‐Peng ; Yang, Hui‐Jun ; Wu, Wan‐Zhou ; He, Ling‐Fang ; Tang, Can‐E ; Zhang, Guo‐Gang ; Bai, Yong‐Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5406-c94532ab12500ab450a3797bb5cb4d17ffe24acea51002ea1d0ff2dbd090eec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acute coronary syndrome</topic><topic>Acute Coronary Syndrome - genetics</topic><topic>Acute Coronary Syndrome - pathology</topic><topic>Acute coronary syndromes</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Cardiac function</topic><topic>Cathepsin K</topic><topic>Cathepsin K - genetics</topic><topic>Cell Line</topic><topic>Cell Proliferation - genetics</topic><topic>Computer applications</topic><topic>Down-Regulation - genetics</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - pathology</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene Expression - genetics</topic><topic>Gene silencing</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Hybridization</topic><topic>Hypoxia</topic><topic>Hypoxia - genetics</topic><topic>Infarction</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>MiR‐185</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - genetics</topic><topic>Myocardium</topic><topic>Myocardium - pathology</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Original</topic><topic>Recovery of Function - genetics</topic><topic>Regulators</topic><topic>Reporter gene</topic><topic>RNA, Messenger - genetics</topic><topic>Umbilical vein</topic><topic>Up-Regulation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chuan‐Chang</creatorcontrib><creatorcontrib>Qiu, Xue‐Ting</creatorcontrib><creatorcontrib>Sun, Quan</creatorcontrib><creatorcontrib>Zhou, Ji‐Peng</creatorcontrib><creatorcontrib>Yang, Hui‐Jun</creatorcontrib><creatorcontrib>Wu, Wan‐Zhou</creatorcontrib><creatorcontrib>He, Ling‐Fang</creatorcontrib><creatorcontrib>Tang, Can‐E</creatorcontrib><creatorcontrib>Zhang, Guo‐Gang</creatorcontrib><creatorcontrib>Bai, Yong‐Ping</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chuan‐Chang</au><au>Qiu, Xue‐Ting</au><au>Sun, Quan</au><au>Zhou, Ji‐Peng</au><au>Yang, Hui‐Jun</au><au>Wu, Wan‐Zhou</au><au>He, Ling‐Fang</au><au>Tang, Can‐E</au><au>Zhang, Guo‐Gang</au><au>Bai, Yong‐Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous reduction of miR‐185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2019-02</date><risdate>2019</risdate><volume>23</volume><issue>2</issue><spage>1164</spage><epage>1173</epage><pages>1164-1173</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>30450725</pmid><doi>10.1111/jcmm.14016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6062-9295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2019-02, Vol.23 (2), p.1164-1173 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6349160 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | acute coronary syndrome Acute Coronary Syndrome - genetics Acute Coronary Syndrome - pathology Acute coronary syndromes Angiogenesis Animals Cardiac function Cathepsin K Cathepsin K - genetics Cell Line Cell Proliferation - genetics Computer applications Down-Regulation - genetics Endothelial cells Endothelial Cells - pathology Fluorescence Gene expression Gene Expression - genetics Gene silencing Heart Heart attacks Human Umbilical Vein Endothelial Cells Humans Hybridization Hypoxia Hypoxia - genetics Infarction Mice MicroRNAs MicroRNAs - genetics miRNA MiR‐185 Myocardial infarction Myocardial Infarction - genetics Myocardium Myocardium - pathology Myocytes, Cardiac - pathology Original Recovery of Function - genetics Regulators Reporter gene RNA, Messenger - genetics Umbilical vein Up-Regulation - genetics |
title | Endogenous reduction of miR‐185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20reduction%20of%20miR%E2%80%90185%20accelerates%20cardiac%20function%20recovery%20in%20mice%20following%20myocardial%20infarction%20via%20targeting%20of%20cathepsin%20K&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Li,%20Chuan%E2%80%90Chang&rft.date=2019-02&rft.volume=23&rft.issue=2&rft.spage=1164&rft.epage=1173&rft.pages=1164-1173&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.14016&rft_dat=%3Cproquest_pubme%3E2135637165%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2171686320&rft_id=info:pmid/30450725&rfr_iscdi=true |