Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5′ splice-site sequences due to weak interactions with SR proteins

Abstract Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2019-01, Vol.47 (2), p.911-928
Hauptverfasser: Krchňáková, Zuzana, Thakur, Prasoon Kumar, Krausová, Michaela, Bieberstein, Nicole, Haberman, Nejc, Müller-McNicoll, Michaela, Staněk, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 928
container_issue 2
container_start_page 911
container_title Nucleic acids research
container_volume 47
creator Krchňáková, Zuzana
Thakur, Prasoon Kumar
Krausová, Michaela
Bieberstein, Nicole
Haberman, Nejc
Müller-McNicoll, Michaela
Staněk, David
description Abstract Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5′ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5′ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.
doi_str_mv 10.1093/nar/gky1147
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gky1147</oup_id><sourcerecordid>2135131820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-cc513140fab71231afc8da7fdaf8865c70e53f5305c50a7c0fed2cfa5e51150e3</originalsourceid><addsrcrecordid>eNp9kc1O3TAQha2qqNxCV91XXlVIVcAT20nYVEKoFCREJX7WlrHHF5dcO42Toux4h75JH6lPgqN7i9oNq5E8n8_MmUPIe2D7wA75QdD9wfJ-AhD1K7IAXpWFOKzK12TBOJMFMNFsk7cpfWcMBEjxhmxzJoSUtViQX1dd640PSxodbWOuIYbCRDs_XV4cJdr1fqV7307UYofBJhoD7WI7dVPu-AwiHXptBqqDpfLP42-aZk0skh-QJvwxYjCYqB0zGOkD6nvqw4DzHx9Dog9-uKNXl3lSHNCHtEu2nG4TvtvUHXJz8uX6-LQ4__b17PjovDACyqEwRgIHwZy-raHkoJ1prK6d1a5pKmlqhpI7mW9gJNO1YQ5taZyWKAEkQ75DPq91u_F2hdZgyD5atTY8qai9-r8T_J1axp-q4kI0FcsCexuBPmaXaVArnwy2rQ4Yx6RK4POKTTmjn9ao6WNKPbrnMcDUHKPKMapNjJn-8O9mz-zf3DLwcQ3EsXtR6Qkh-awH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135131820</pqid></control><display><type>article</type><title>Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5′ splice-site sequences due to weak interactions with SR proteins</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Krchňáková, Zuzana ; Thakur, Prasoon Kumar ; Krausová, Michaela ; Bieberstein, Nicole ; Haberman, Nejc ; Müller-McNicoll, Michaela ; Staněk, David</creator><creatorcontrib>Krchňáková, Zuzana ; Thakur, Prasoon Kumar ; Krausová, Michaela ; Bieberstein, Nicole ; Haberman, Nejc ; Müller-McNicoll, Michaela ; Staněk, David</creatorcontrib><description>Abstract Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5′ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5′ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gky1147</identifier><identifier>PMID: 30445574</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>HeLa Cells ; Humans ; Introns ; Pyrimidines - analysis ; RNA and RNA-protein complexes ; RNA Splice Sites ; RNA Splicing ; RNA, Long Noncoding - metabolism ; Serine-Arginine Splicing Factors - metabolism</subject><ispartof>Nucleic acids research, 2019-01, Vol.47 (2), p.911-928</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-cc513140fab71231afc8da7fdaf8865c70e53f5305c50a7c0fed2cfa5e51150e3</citedby><cites>FETCH-LOGICAL-c412t-cc513140fab71231afc8da7fdaf8865c70e53f5305c50a7c0fed2cfa5e51150e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344860/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344860/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30445574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krchňáková, Zuzana</creatorcontrib><creatorcontrib>Thakur, Prasoon Kumar</creatorcontrib><creatorcontrib>Krausová, Michaela</creatorcontrib><creatorcontrib>Bieberstein, Nicole</creatorcontrib><creatorcontrib>Haberman, Nejc</creatorcontrib><creatorcontrib>Müller-McNicoll, Michaela</creatorcontrib><creatorcontrib>Staněk, David</creatorcontrib><title>Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5′ splice-site sequences due to weak interactions with SR proteins</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5′ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5′ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.</description><subject>HeLa Cells</subject><subject>Humans</subject><subject>Introns</subject><subject>Pyrimidines - analysis</subject><subject>RNA and RNA-protein complexes</subject><subject>RNA Splice Sites</subject><subject>RNA Splicing</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Serine-Arginine Splicing Factors - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1O3TAQha2qqNxCV91XXlVIVcAT20nYVEKoFCREJX7WlrHHF5dcO42Toux4h75JH6lPgqN7i9oNq5E8n8_MmUPIe2D7wA75QdD9wfJ-AhD1K7IAXpWFOKzK12TBOJMFMNFsk7cpfWcMBEjxhmxzJoSUtViQX1dd640PSxodbWOuIYbCRDs_XV4cJdr1fqV7307UYofBJhoD7WI7dVPu-AwiHXptBqqDpfLP42-aZk0skh-QJvwxYjCYqB0zGOkD6nvqw4DzHx9Dog9-uKNXl3lSHNCHtEu2nG4TvtvUHXJz8uX6-LQ4__b17PjovDACyqEwRgIHwZy-raHkoJ1prK6d1a5pKmlqhpI7mW9gJNO1YQ5taZyWKAEkQ75DPq91u_F2hdZgyD5atTY8qai9-r8T_J1axp-q4kI0FcsCexuBPmaXaVArnwy2rQ4Yx6RK4POKTTmjn9ao6WNKPbrnMcDUHKPKMapNjJn-8O9mz-zf3DLwcQ3EsXtR6Qkh-awH</recordid><startdate>20190125</startdate><enddate>20190125</enddate><creator>Krchňáková, Zuzana</creator><creator>Thakur, Prasoon Kumar</creator><creator>Krausová, Michaela</creator><creator>Bieberstein, Nicole</creator><creator>Haberman, Nejc</creator><creator>Müller-McNicoll, Michaela</creator><creator>Staněk, David</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190125</creationdate><title>Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5′ splice-site sequences due to weak interactions with SR proteins</title><author>Krchňáková, Zuzana ; Thakur, Prasoon Kumar ; Krausová, Michaela ; Bieberstein, Nicole ; Haberman, Nejc ; Müller-McNicoll, Michaela ; Staněk, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-cc513140fab71231afc8da7fdaf8865c70e53f5305c50a7c0fed2cfa5e51150e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>HeLa Cells</topic><topic>Humans</topic><topic>Introns</topic><topic>Pyrimidines - analysis</topic><topic>RNA and RNA-protein complexes</topic><topic>RNA Splice Sites</topic><topic>RNA Splicing</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Serine-Arginine Splicing Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krchňáková, Zuzana</creatorcontrib><creatorcontrib>Thakur, Prasoon Kumar</creatorcontrib><creatorcontrib>Krausová, Michaela</creatorcontrib><creatorcontrib>Bieberstein, Nicole</creatorcontrib><creatorcontrib>Haberman, Nejc</creatorcontrib><creatorcontrib>Müller-McNicoll, Michaela</creatorcontrib><creatorcontrib>Staněk, David</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krchňáková, Zuzana</au><au>Thakur, Prasoon Kumar</au><au>Krausová, Michaela</au><au>Bieberstein, Nicole</au><au>Haberman, Nejc</au><au>Müller-McNicoll, Michaela</au><au>Staněk, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5′ splice-site sequences due to weak interactions with SR proteins</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-01-25</date><risdate>2019</risdate><volume>47</volume><issue>2</issue><spage>911</spage><epage>928</epage><pages>911-928</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5′ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5′ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30445574</pmid><doi>10.1093/nar/gky1147</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-01, Vol.47 (2), p.911-928
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344860
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects HeLa Cells
Humans
Introns
Pyrimidines - analysis
RNA and RNA-protein complexes
RNA Splice Sites
RNA Splicing
RNA, Long Noncoding - metabolism
Serine-Arginine Splicing Factors - metabolism
title Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5′ splice-site sequences due to weak interactions with SR proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Splicing%20of%20long%20non-coding%20RNAs%20primarily%20depends%20on%20polypyrimidine%20tract%20and%205%E2%80%B2%20splice-site%20sequences%20due%20to%20weak%20interactions%20with%20SR%20proteins&rft.jtitle=Nucleic%20acids%20research&rft.au=Krch%C5%88%C3%A1kov%C3%A1,%20Zuzana&rft.date=2019-01-25&rft.volume=47&rft.issue=2&rft.spage=911&rft.epage=928&rft.pages=911-928&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gky1147&rft_dat=%3Cproquest_pubme%3E2135131820%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135131820&rft_id=info:pmid/30445574&rft_oup_id=10.1093/nar/gky1147&rfr_iscdi=true