PERK Signaling Regulates Extracellular Proteostasis of an Amyloidogenic Protein During Endoplasmic Reticulum Stress

The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteosta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-01, Vol.9 (1), p.410, Article 410
Hauptverfasser: Romine, Isabelle C., Wiseman, R. Luke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 410
container_title Scientific reports
container_volume 9
creator Romine, Isabelle C.
Wiseman, R. Luke
description The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteostasis during ER stress using a conformational reporter of the secreted amyloidogenic protein transthyretin (TTR). We show that inhibiting PERK signaling impairs secretion of destabilized TTR during thapsigargin (Tg)-induced ER stress by increasing its ER retention in chaperone-bound complexes. Interestingly, PERK inhibition increases the ER stress-dependent secretion of TTR in non-native conformations that accumulate extracellularly as soluble oligomers. Pharmacologic or genetic TTR stabilization partially restores secretion of native TTR tetramers. However, PERK inhibition still increases the ER stress-dependent secretion of TTR in non-native conformations under these conditions, indicating that the conformation of stable secreted proteins can also be affected by inhibiting PERK. Our results define a role for PERK in regulating extracellular proteostasis during ER stress and indicate that genetic or aging-related alterations in PERK signaling can exacerbate ER stress-related imbalances in extracellular proteostasis implicated in diverse diseases.
doi_str_mv 10.1038/s41598-018-37207-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170390193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-3a0f2b6bd57995be2cd1ab52d396794d9d677483c690ce0a67ceb135e2cfc0bc3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CALHEOjO04Xl-QqrJ8qJWotnC2HMcJrpx48SSI_nu8pC3lgi9ja555xzMvIS8ZvGEgNm-xZlJvKmCbSigOqoIn5JhDLSsuOH_66H5EThFvoBzJdc30c3IkoFESODsmeLXdXdDrMEw2hmmgOz8s0c4e6fbXnK3zMZZ3plc5zT7hbDEgTT21Ez0bb2MKXRr8FNwKhIm-X_JBZzt1aR8tjiW183NwS1xGej1nj_iCPOttRH96F0_Itw_br-efqssvHz-fn11WTjI2V8JCz9um7aTSWraeu47ZVvJO6EbputNdo1S9Ea7R4DzYRjnfMiEL2DtonTgh71bd_dKOvnN-KhNFs89htPnWJBvMv5kpfDdD-mkaUddNLYrA6zuBnH4sHmdzk5ZcNoWGMwVCA9MHiq-Uywkx-_6hAwNz8MqsXpnilfnjlYFS9Orx3x5K7p0pgFgB3B8W6vPf3v-R_Q1rZaJL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170390193</pqid></control><display><type>article</type><title>PERK Signaling Regulates Extracellular Proteostasis of an Amyloidogenic Protein During Endoplasmic Reticulum Stress</title><source>Open Access: Nature Open Access</source><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><source>Springer Nature OA Free Journals</source><creator>Romine, Isabelle C. ; Wiseman, R. Luke</creator><creatorcontrib>Romine, Isabelle C. ; Wiseman, R. Luke</creatorcontrib><description>The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteostasis during ER stress using a conformational reporter of the secreted amyloidogenic protein transthyretin (TTR). We show that inhibiting PERK signaling impairs secretion of destabilized TTR during thapsigargin (Tg)-induced ER stress by increasing its ER retention in chaperone-bound complexes. Interestingly, PERK inhibition increases the ER stress-dependent secretion of TTR in non-native conformations that accumulate extracellularly as soluble oligomers. Pharmacologic or genetic TTR stabilization partially restores secretion of native TTR tetramers. However, PERK inhibition still increases the ER stress-dependent secretion of TTR in non-native conformations under these conditions, indicating that the conformation of stable secreted proteins can also be affected by inhibiting PERK. Our results define a role for PERK in regulating extracellular proteostasis during ER stress and indicate that genetic or aging-related alterations in PERK signaling can exacerbate ER stress-related imbalances in extracellular proteostasis implicated in diverse diseases.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-37207-0</identifier><identifier>PMID: 30675021</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/470/1463 ; 631/80/86/2366 ; Aging ; Amyloid Neuropathies, Familial - metabolism ; Amyloid Neuropathies, Familial - pathology ; Amyloidogenesis ; eIF-2 Kinase - genetics ; eIF-2 Kinase - metabolism ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Prealbumin - metabolism ; Protein folding ; Proteins ; Proteostasis ; Science ; Science (multidisciplinary) ; Secretion ; Thapsigargin ; Thapsigargin - adverse effects ; Thapsigargin - pharmacology ; Transthyretin</subject><ispartof>Scientific reports, 2019-01, Vol.9 (1), p.410, Article 410</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-3a0f2b6bd57995be2cd1ab52d396794d9d677483c690ce0a67ceb135e2cfc0bc3</citedby><cites>FETCH-LOGICAL-c511t-3a0f2b6bd57995be2cd1ab52d396794d9d677483c690ce0a67ceb135e2cfc0bc3</cites><orcidid>0000-0001-9287-6840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344643/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344643/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30675021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romine, Isabelle C.</creatorcontrib><creatorcontrib>Wiseman, R. Luke</creatorcontrib><title>PERK Signaling Regulates Extracellular Proteostasis of an Amyloidogenic Protein During Endoplasmic Reticulum Stress</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteostasis during ER stress using a conformational reporter of the secreted amyloidogenic protein transthyretin (TTR). We show that inhibiting PERK signaling impairs secretion of destabilized TTR during thapsigargin (Tg)-induced ER stress by increasing its ER retention in chaperone-bound complexes. Interestingly, PERK inhibition increases the ER stress-dependent secretion of TTR in non-native conformations that accumulate extracellularly as soluble oligomers. Pharmacologic or genetic TTR stabilization partially restores secretion of native TTR tetramers. However, PERK inhibition still increases the ER stress-dependent secretion of TTR in non-native conformations under these conditions, indicating that the conformation of stable secreted proteins can also be affected by inhibiting PERK. Our results define a role for PERK in regulating extracellular proteostasis during ER stress and indicate that genetic or aging-related alterations in PERK signaling can exacerbate ER stress-related imbalances in extracellular proteostasis implicated in diverse diseases.</description><subject>631/45/470/1463</subject><subject>631/80/86/2366</subject><subject>Aging</subject><subject>Amyloid Neuropathies, Familial - metabolism</subject><subject>Amyloid Neuropathies, Familial - pathology</subject><subject>Amyloidogenesis</subject><subject>eIF-2 Kinase - genetics</subject><subject>eIF-2 Kinase - metabolism</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Prealbumin - metabolism</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Proteostasis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Secretion</subject><subject>Thapsigargin</subject><subject>Thapsigargin - adverse effects</subject><subject>Thapsigargin - pharmacology</subject><subject>Transthyretin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CALHEOjO04Xl-QqrJ8qJWotnC2HMcJrpx48SSI_nu8pC3lgi9ja555xzMvIS8ZvGEgNm-xZlJvKmCbSigOqoIn5JhDLSsuOH_66H5EThFvoBzJdc30c3IkoFESODsmeLXdXdDrMEw2hmmgOz8s0c4e6fbXnK3zMZZ3plc5zT7hbDEgTT21Ez0bb2MKXRr8FNwKhIm-X_JBZzt1aR8tjiW183NwS1xGej1nj_iCPOttRH96F0_Itw_br-efqssvHz-fn11WTjI2V8JCz9um7aTSWraeu47ZVvJO6EbputNdo1S9Ea7R4DzYRjnfMiEL2DtonTgh71bd_dKOvnN-KhNFs89htPnWJBvMv5kpfDdD-mkaUddNLYrA6zuBnH4sHmdzk5ZcNoWGMwVCA9MHiq-Uywkx-_6hAwNz8MqsXpnilfnjlYFS9Orx3x5K7p0pgFgB3B8W6vPf3v-R_Q1rZaJL</recordid><startdate>20190123</startdate><enddate>20190123</enddate><creator>Romine, Isabelle C.</creator><creator>Wiseman, R. Luke</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9287-6840</orcidid></search><sort><creationdate>20190123</creationdate><title>PERK Signaling Regulates Extracellular Proteostasis of an Amyloidogenic Protein During Endoplasmic Reticulum Stress</title><author>Romine, Isabelle C. ; Wiseman, R. Luke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-3a0f2b6bd57995be2cd1ab52d396794d9d677483c690ce0a67ceb135e2cfc0bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45/470/1463</topic><topic>631/80/86/2366</topic><topic>Aging</topic><topic>Amyloid Neuropathies, Familial - metabolism</topic><topic>Amyloid Neuropathies, Familial - pathology</topic><topic>Amyloidogenesis</topic><topic>eIF-2 Kinase - genetics</topic><topic>eIF-2 Kinase - metabolism</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Prealbumin - metabolism</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Proteostasis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Secretion</topic><topic>Thapsigargin</topic><topic>Thapsigargin - adverse effects</topic><topic>Thapsigargin - pharmacology</topic><topic>Transthyretin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romine, Isabelle C.</creatorcontrib><creatorcontrib>Wiseman, R. Luke</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romine, Isabelle C.</au><au>Wiseman, R. Luke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PERK Signaling Regulates Extracellular Proteostasis of an Amyloidogenic Protein During Endoplasmic Reticulum Stress</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-01-23</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>410</spage><pages>410-</pages><artnum>410</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteostasis during ER stress using a conformational reporter of the secreted amyloidogenic protein transthyretin (TTR). We show that inhibiting PERK signaling impairs secretion of destabilized TTR during thapsigargin (Tg)-induced ER stress by increasing its ER retention in chaperone-bound complexes. Interestingly, PERK inhibition increases the ER stress-dependent secretion of TTR in non-native conformations that accumulate extracellularly as soluble oligomers. Pharmacologic or genetic TTR stabilization partially restores secretion of native TTR tetramers. However, PERK inhibition still increases the ER stress-dependent secretion of TTR in non-native conformations under these conditions, indicating that the conformation of stable secreted proteins can also be affected by inhibiting PERK. Our results define a role for PERK in regulating extracellular proteostasis during ER stress and indicate that genetic or aging-related alterations in PERK signaling can exacerbate ER stress-related imbalances in extracellular proteostasis implicated in diverse diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30675021</pmid><doi>10.1038/s41598-018-37207-0</doi><orcidid>https://orcid.org/0000-0001-9287-6840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-01, Vol.9 (1), p.410, Article 410
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344643
source Open Access: Nature Open Access; PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library; Springer Nature OA Free Journals
subjects 631/45/470/1463
631/80/86/2366
Aging
Amyloid Neuropathies, Familial - metabolism
Amyloid Neuropathies, Familial - pathology
Amyloidogenesis
eIF-2 Kinase - genetics
eIF-2 Kinase - metabolism
Endoplasmic reticulum
Endoplasmic Reticulum Stress
HEK293 Cells
Humanities and Social Sciences
Humans
multidisciplinary
Prealbumin - metabolism
Protein folding
Proteins
Proteostasis
Science
Science (multidisciplinary)
Secretion
Thapsigargin
Thapsigargin - adverse effects
Thapsigargin - pharmacology
Transthyretin
title PERK Signaling Regulates Extracellular Proteostasis of an Amyloidogenic Protein During Endoplasmic Reticulum Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PERK%20Signaling%20Regulates%20Extracellular%20Proteostasis%20of%20an%20Amyloidogenic%20Protein%20During%20Endoplasmic%20Reticulum%20Stress&rft.jtitle=Scientific%20reports&rft.au=Romine,%20Isabelle%20C.&rft.date=2019-01-23&rft.volume=9&rft.issue=1&rft.spage=410&rft.pages=410-&rft.artnum=410&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-37207-0&rft_dat=%3Cproquest_pubme%3E2170390193%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170390193&rft_id=info:pmid/30675021&rfr_iscdi=true