Study of 3D-printed chitosan scaffold features after different post-printing gelation processes

3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-01, Vol.9 (1), p.362-362, Article 362
Hauptverfasser: Bergonzi, Carlo, Di Natale, Antonina, Zimetti, Francesca, Marchi, Cinzia, Bianchera, Annalisa, Bernini, Franco, Silvestri, Marco, Bettini, Ruggero, Elviri, Lisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 1
container_start_page 362
container_title Scientific reports
container_volume 9
creator Bergonzi, Carlo
Di Natale, Antonina
Zimetti, Francesca
Marchi, Cinzia
Bianchera, Annalisa
Bernini, Franco
Silvestri, Marco
Bettini, Ruggero
Elviri, Lisa
description 3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose, gel forming properties of different media were tested on their capability to retain 3D structure, water content, mechanical resistance and surface/internal porosity. Three different gelation media (i.e. KOH 1.5 M, Na 2 CO 3 1.5 M, ammonia vapours) were selected and the 3D CH scaffolds were tested in terms of biocompatibility toward fibroblast as skin associated human cell line.
doi_str_mv 10.1038/s41598-018-36613-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179430896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-65c0c38868478230073df4a4624fe70a3ca554f31474d85109c576dfe640f14b3</originalsourceid><addsrcrecordid>eNp9kU1LHTEYhYO0qFj_gAsJdNPNtPn-2BSKVVsQutCuQ8y8uY7MnVyTTMF_b27HqnVhNgnkOSfnzUHoiJLPlHDzpQgqrekINR1XivLO7KB9RoTsGGfs3YvzHjos5Za0JZkV1O6iPU6UFpbafeQu69zf4xQx_95t8jBV6HG4GWoqfsIl-BjT2OMIvs4ZCvaxQsb9ECNkmCrepFIX3TCt8ApGX4c04U1OAUqB8gG9j34scPi4H6DfZ6dXJz-6i1_nP0--XXRBcl07JQMJ3BhlhDaME6J5H4UXiokImngevJQiciq06I2kxAapVR9BCRKpuOYH6Oviu5mv19CHli370bVka5_vXfKD-_9mGm7cKv1xigshjW4Gnx4NcrqboVS3HkqAcfQTpLk4RrUVnBirGvrxFXqb5jy18bYU4ZZQIhrFFirkVEqG-BSGEret0C0Vulah-1uhM010_HKMJ8m_whrAF6BsP30F-fntN2wfAGgsp1o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170390104</pqid></control><display><type>article</type><title>Study of 3D-printed chitosan scaffold features after different post-printing gelation processes</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Bergonzi, Carlo ; Di Natale, Antonina ; Zimetti, Francesca ; Marchi, Cinzia ; Bianchera, Annalisa ; Bernini, Franco ; Silvestri, Marco ; Bettini, Ruggero ; Elviri, Lisa</creator><creatorcontrib>Bergonzi, Carlo ; Di Natale, Antonina ; Zimetti, Francesca ; Marchi, Cinzia ; Bianchera, Annalisa ; Bernini, Franco ; Silvestri, Marco ; Bettini, Ruggero ; Elviri, Lisa</creatorcontrib><description>3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose, gel forming properties of different media were tested on their capability to retain 3D structure, water content, mechanical resistance and surface/internal porosity. Three different gelation media (i.e. KOH 1.5 M, Na 2 CO 3 1.5 M, ammonia vapours) were selected and the 3D CH scaffolds were tested in terms of biocompatibility toward fibroblast as skin associated human cell line.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36613-8</identifier><identifier>PMID: 30674919</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 3-D printers ; 639/166/985 ; 639/301/54/2295 ; Ammonia ; Biocompatibility ; Biomaterials ; Cell culture ; Chitosan ; Gelation ; Growth factors ; Humanities and Social Sciences ; Hydrogels ; Mechanical properties ; Medical innovations ; multidisciplinary ; Polymers ; Polyvinyl alcohol ; Porosity ; Science ; Science (multidisciplinary) ; Skin ; Sodium carbonate ; Tissue engineering ; Water content</subject><ispartof>Scientific reports, 2019-01, Vol.9 (1), p.362-362, Article 362</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-65c0c38868478230073df4a4624fe70a3ca554f31474d85109c576dfe640f14b3</citedby><cites>FETCH-LOGICAL-c537t-65c0c38868478230073df4a4624fe70a3ca554f31474d85109c576dfe640f14b3</cites><orcidid>0000-0002-3160-9586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344587/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30674919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergonzi, Carlo</creatorcontrib><creatorcontrib>Di Natale, Antonina</creatorcontrib><creatorcontrib>Zimetti, Francesca</creatorcontrib><creatorcontrib>Marchi, Cinzia</creatorcontrib><creatorcontrib>Bianchera, Annalisa</creatorcontrib><creatorcontrib>Bernini, Franco</creatorcontrib><creatorcontrib>Silvestri, Marco</creatorcontrib><creatorcontrib>Bettini, Ruggero</creatorcontrib><creatorcontrib>Elviri, Lisa</creatorcontrib><title>Study of 3D-printed chitosan scaffold features after different post-printing gelation processes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose, gel forming properties of different media were tested on their capability to retain 3D structure, water content, mechanical resistance and surface/internal porosity. Three different gelation media (i.e. KOH 1.5 M, Na 2 CO 3 1.5 M, ammonia vapours) were selected and the 3D CH scaffolds were tested in terms of biocompatibility toward fibroblast as skin associated human cell line.</description><subject>13</subject><subject>3-D printers</subject><subject>639/166/985</subject><subject>639/301/54/2295</subject><subject>Ammonia</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Cell culture</subject><subject>Chitosan</subject><subject>Gelation</subject><subject>Growth factors</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Medical innovations</subject><subject>multidisciplinary</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Porosity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skin</subject><subject>Sodium carbonate</subject><subject>Tissue engineering</subject><subject>Water content</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1LHTEYhYO0qFj_gAsJdNPNtPn-2BSKVVsQutCuQ8y8uY7MnVyTTMF_b27HqnVhNgnkOSfnzUHoiJLPlHDzpQgqrekINR1XivLO7KB9RoTsGGfs3YvzHjos5Za0JZkV1O6iPU6UFpbafeQu69zf4xQx_95t8jBV6HG4GWoqfsIl-BjT2OMIvs4ZCvaxQsb9ECNkmCrepFIX3TCt8ApGX4c04U1OAUqB8gG9j34scPi4H6DfZ6dXJz-6i1_nP0--XXRBcl07JQMJ3BhlhDaME6J5H4UXiokImngevJQiciq06I2kxAapVR9BCRKpuOYH6Oviu5mv19CHli370bVka5_vXfKD-_9mGm7cKv1xigshjW4Gnx4NcrqboVS3HkqAcfQTpLk4RrUVnBirGvrxFXqb5jy18bYU4ZZQIhrFFirkVEqG-BSGEret0C0Vulah-1uhM010_HKMJ8m_whrAF6BsP30F-fntN2wfAGgsp1o</recordid><startdate>20190123</startdate><enddate>20190123</enddate><creator>Bergonzi, Carlo</creator><creator>Di Natale, Antonina</creator><creator>Zimetti, Francesca</creator><creator>Marchi, Cinzia</creator><creator>Bianchera, Annalisa</creator><creator>Bernini, Franco</creator><creator>Silvestri, Marco</creator><creator>Bettini, Ruggero</creator><creator>Elviri, Lisa</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3160-9586</orcidid></search><sort><creationdate>20190123</creationdate><title>Study of 3D-printed chitosan scaffold features after different post-printing gelation processes</title><author>Bergonzi, Carlo ; Di Natale, Antonina ; Zimetti, Francesca ; Marchi, Cinzia ; Bianchera, Annalisa ; Bernini, Franco ; Silvestri, Marco ; Bettini, Ruggero ; Elviri, Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-65c0c38868478230073df4a4624fe70a3ca554f31474d85109c576dfe640f14b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>3-D printers</topic><topic>639/166/985</topic><topic>639/301/54/2295</topic><topic>Ammonia</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Cell culture</topic><topic>Chitosan</topic><topic>Gelation</topic><topic>Growth factors</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Medical innovations</topic><topic>multidisciplinary</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Porosity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skin</topic><topic>Sodium carbonate</topic><topic>Tissue engineering</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergonzi, Carlo</creatorcontrib><creatorcontrib>Di Natale, Antonina</creatorcontrib><creatorcontrib>Zimetti, Francesca</creatorcontrib><creatorcontrib>Marchi, Cinzia</creatorcontrib><creatorcontrib>Bianchera, Annalisa</creatorcontrib><creatorcontrib>Bernini, Franco</creatorcontrib><creatorcontrib>Silvestri, Marco</creatorcontrib><creatorcontrib>Bettini, Ruggero</creatorcontrib><creatorcontrib>Elviri, Lisa</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergonzi, Carlo</au><au>Di Natale, Antonina</au><au>Zimetti, Francesca</au><au>Marchi, Cinzia</au><au>Bianchera, Annalisa</au><au>Bernini, Franco</au><au>Silvestri, Marco</au><au>Bettini, Ruggero</au><au>Elviri, Lisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of 3D-printed chitosan scaffold features after different post-printing gelation processes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-01-23</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>362</spage><epage>362</epage><pages>362-362</pages><artnum>362</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose, gel forming properties of different media were tested on their capability to retain 3D structure, water content, mechanical resistance and surface/internal porosity. Three different gelation media (i.e. KOH 1.5 M, Na 2 CO 3 1.5 M, ammonia vapours) were selected and the 3D CH scaffolds were tested in terms of biocompatibility toward fibroblast as skin associated human cell line.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30674919</pmid><doi>10.1038/s41598-018-36613-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3160-9586</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-01, Vol.9 (1), p.362-362, Article 362
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344587
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13
3-D printers
639/166/985
639/301/54/2295
Ammonia
Biocompatibility
Biomaterials
Cell culture
Chitosan
Gelation
Growth factors
Humanities and Social Sciences
Hydrogels
Mechanical properties
Medical innovations
multidisciplinary
Polymers
Polyvinyl alcohol
Porosity
Science
Science (multidisciplinary)
Skin
Sodium carbonate
Tissue engineering
Water content
title Study of 3D-printed chitosan scaffold features after different post-printing gelation processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%203D-printed%20chitosan%20scaffold%20features%20after%20different%20post-printing%20gelation%20processes&rft.jtitle=Scientific%20reports&rft.au=Bergonzi,%20Carlo&rft.date=2019-01-23&rft.volume=9&rft.issue=1&rft.spage=362&rft.epage=362&rft.pages=362-362&rft.artnum=362&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36613-8&rft_dat=%3Cproquest_pubme%3E2179430896%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170390104&rft_id=info:pmid/30674919&rfr_iscdi=true