Study of 3D-printed chitosan scaffold features after different post-printing gelation processes
3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose,...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-01, Vol.9 (1), p.362-362, Article 362 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 1 |
container_start_page | 362 |
container_title | Scientific reports |
container_volume | 9 |
creator | Bergonzi, Carlo Di Natale, Antonina Zimetti, Francesca Marchi, Cinzia Bianchera, Annalisa Bernini, Franco Silvestri, Marco Bettini, Ruggero Elviri, Lisa |
description | 3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose, gel forming properties of different media were tested on their capability to retain 3D structure, water content, mechanical resistance and surface/internal porosity. Three different gelation media (i.e. KOH 1.5 M, Na
2
CO
3
1.5 M, ammonia vapours) were selected and the 3D CH scaffolds were tested in terms of biocompatibility toward fibroblast as skin associated human cell line. |
doi_str_mv | 10.1038/s41598-018-36613-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179430896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-65c0c38868478230073df4a4624fe70a3ca554f31474d85109c576dfe640f14b3</originalsourceid><addsrcrecordid>eNp9kU1LHTEYhYO0qFj_gAsJdNPNtPn-2BSKVVsQutCuQ8y8uY7MnVyTTMF_b27HqnVhNgnkOSfnzUHoiJLPlHDzpQgqrekINR1XivLO7KB9RoTsGGfs3YvzHjos5Za0JZkV1O6iPU6UFpbafeQu69zf4xQx_95t8jBV6HG4GWoqfsIl-BjT2OMIvs4ZCvaxQsb9ECNkmCrepFIX3TCt8ApGX4c04U1OAUqB8gG9j34scPi4H6DfZ6dXJz-6i1_nP0--XXRBcl07JQMJ3BhlhDaME6J5H4UXiokImngevJQiciq06I2kxAapVR9BCRKpuOYH6Oviu5mv19CHli370bVka5_vXfKD-_9mGm7cKv1xigshjW4Gnx4NcrqboVS3HkqAcfQTpLk4RrUVnBirGvrxFXqb5jy18bYU4ZZQIhrFFirkVEqG-BSGEret0C0Vulah-1uhM010_HKMJ8m_whrAF6BsP30F-fntN2wfAGgsp1o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170390104</pqid></control><display><type>article</type><title>Study of 3D-printed chitosan scaffold features after different post-printing gelation processes</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Bergonzi, Carlo ; Di Natale, Antonina ; Zimetti, Francesca ; Marchi, Cinzia ; Bianchera, Annalisa ; Bernini, Franco ; Silvestri, Marco ; Bettini, Ruggero ; Elviri, Lisa</creator><creatorcontrib>Bergonzi, Carlo ; Di Natale, Antonina ; Zimetti, Francesca ; Marchi, Cinzia ; Bianchera, Annalisa ; Bernini, Franco ; Silvestri, Marco ; Bettini, Ruggero ; Elviri, Lisa</creatorcontrib><description>3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose, gel forming properties of different media were tested on their capability to retain 3D structure, water content, mechanical resistance and surface/internal porosity. Three different gelation media (i.e. KOH 1.5 M, Na
2
CO
3
1.5 M, ammonia vapours) were selected and the 3D CH scaffolds were tested in terms of biocompatibility toward fibroblast as skin associated human cell line.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36613-8</identifier><identifier>PMID: 30674919</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 3-D printers ; 639/166/985 ; 639/301/54/2295 ; Ammonia ; Biocompatibility ; Biomaterials ; Cell culture ; Chitosan ; Gelation ; Growth factors ; Humanities and Social Sciences ; Hydrogels ; Mechanical properties ; Medical innovations ; multidisciplinary ; Polymers ; Polyvinyl alcohol ; Porosity ; Science ; Science (multidisciplinary) ; Skin ; Sodium carbonate ; Tissue engineering ; Water content</subject><ispartof>Scientific reports, 2019-01, Vol.9 (1), p.362-362, Article 362</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-65c0c38868478230073df4a4624fe70a3ca554f31474d85109c576dfe640f14b3</citedby><cites>FETCH-LOGICAL-c537t-65c0c38868478230073df4a4624fe70a3ca554f31474d85109c576dfe640f14b3</cites><orcidid>0000-0002-3160-9586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344587/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30674919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergonzi, Carlo</creatorcontrib><creatorcontrib>Di Natale, Antonina</creatorcontrib><creatorcontrib>Zimetti, Francesca</creatorcontrib><creatorcontrib>Marchi, Cinzia</creatorcontrib><creatorcontrib>Bianchera, Annalisa</creatorcontrib><creatorcontrib>Bernini, Franco</creatorcontrib><creatorcontrib>Silvestri, Marco</creatorcontrib><creatorcontrib>Bettini, Ruggero</creatorcontrib><creatorcontrib>Elviri, Lisa</creatorcontrib><title>Study of 3D-printed chitosan scaffold features after different post-printing gelation processes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose, gel forming properties of different media were tested on their capability to retain 3D structure, water content, mechanical resistance and surface/internal porosity. Three different gelation media (i.e. KOH 1.5 M, Na
2
CO
3
1.5 M, ammonia vapours) were selected and the 3D CH scaffolds were tested in terms of biocompatibility toward fibroblast as skin associated human cell line.</description><subject>13</subject><subject>3-D printers</subject><subject>639/166/985</subject><subject>639/301/54/2295</subject><subject>Ammonia</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Cell culture</subject><subject>Chitosan</subject><subject>Gelation</subject><subject>Growth factors</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Medical innovations</subject><subject>multidisciplinary</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Porosity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skin</subject><subject>Sodium carbonate</subject><subject>Tissue engineering</subject><subject>Water content</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1LHTEYhYO0qFj_gAsJdNPNtPn-2BSKVVsQutCuQ8y8uY7MnVyTTMF_b27HqnVhNgnkOSfnzUHoiJLPlHDzpQgqrekINR1XivLO7KB9RoTsGGfs3YvzHjos5Za0JZkV1O6iPU6UFpbafeQu69zf4xQx_95t8jBV6HG4GWoqfsIl-BjT2OMIvs4ZCvaxQsb9ECNkmCrepFIX3TCt8ApGX4c04U1OAUqB8gG9j34scPi4H6DfZ6dXJz-6i1_nP0--XXRBcl07JQMJ3BhlhDaME6J5H4UXiokImngevJQiciq06I2kxAapVR9BCRKpuOYH6Oviu5mv19CHli370bVka5_vXfKD-_9mGm7cKv1xigshjW4Gnx4NcrqboVS3HkqAcfQTpLk4RrUVnBirGvrxFXqb5jy18bYU4ZZQIhrFFirkVEqG-BSGEret0C0Vulah-1uhM010_HKMJ8m_whrAF6BsP30F-fntN2wfAGgsp1o</recordid><startdate>20190123</startdate><enddate>20190123</enddate><creator>Bergonzi, Carlo</creator><creator>Di Natale, Antonina</creator><creator>Zimetti, Francesca</creator><creator>Marchi, Cinzia</creator><creator>Bianchera, Annalisa</creator><creator>Bernini, Franco</creator><creator>Silvestri, Marco</creator><creator>Bettini, Ruggero</creator><creator>Elviri, Lisa</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3160-9586</orcidid></search><sort><creationdate>20190123</creationdate><title>Study of 3D-printed chitosan scaffold features after different post-printing gelation processes</title><author>Bergonzi, Carlo ; Di Natale, Antonina ; Zimetti, Francesca ; Marchi, Cinzia ; Bianchera, Annalisa ; Bernini, Franco ; Silvestri, Marco ; Bettini, Ruggero ; Elviri, Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-65c0c38868478230073df4a4624fe70a3ca554f31474d85109c576dfe640f14b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>3-D printers</topic><topic>639/166/985</topic><topic>639/301/54/2295</topic><topic>Ammonia</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Cell culture</topic><topic>Chitosan</topic><topic>Gelation</topic><topic>Growth factors</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Medical innovations</topic><topic>multidisciplinary</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Porosity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skin</topic><topic>Sodium carbonate</topic><topic>Tissue engineering</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergonzi, Carlo</creatorcontrib><creatorcontrib>Di Natale, Antonina</creatorcontrib><creatorcontrib>Zimetti, Francesca</creatorcontrib><creatorcontrib>Marchi, Cinzia</creatorcontrib><creatorcontrib>Bianchera, Annalisa</creatorcontrib><creatorcontrib>Bernini, Franco</creatorcontrib><creatorcontrib>Silvestri, Marco</creatorcontrib><creatorcontrib>Bettini, Ruggero</creatorcontrib><creatorcontrib>Elviri, Lisa</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergonzi, Carlo</au><au>Di Natale, Antonina</au><au>Zimetti, Francesca</au><au>Marchi, Cinzia</au><au>Bianchera, Annalisa</au><au>Bernini, Franco</au><au>Silvestri, Marco</au><au>Bettini, Ruggero</au><au>Elviri, Lisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of 3D-printed chitosan scaffold features after different post-printing gelation processes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-01-23</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>362</spage><epage>362</epage><pages>362-362</pages><artnum>362</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>3D biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative therapies in the tissue engineering field. Here, the behaviour of 3D printed chitosan (CH)-based scaffolds was explored as a function of the post-printing gelation process. To this purpose, gel forming properties of different media were tested on their capability to retain 3D structure, water content, mechanical resistance and surface/internal porosity. Three different gelation media (i.e. KOH 1.5 M, Na
2
CO
3
1.5 M, ammonia vapours) were selected and the 3D CH scaffolds were tested in terms of biocompatibility toward fibroblast as skin associated human cell line.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30674919</pmid><doi>10.1038/s41598-018-36613-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3160-9586</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-01, Vol.9 (1), p.362-362, Article 362 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344587 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13 3-D printers 639/166/985 639/301/54/2295 Ammonia Biocompatibility Biomaterials Cell culture Chitosan Gelation Growth factors Humanities and Social Sciences Hydrogels Mechanical properties Medical innovations multidisciplinary Polymers Polyvinyl alcohol Porosity Science Science (multidisciplinary) Skin Sodium carbonate Tissue engineering Water content |
title | Study of 3D-printed chitosan scaffold features after different post-printing gelation processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%203D-printed%20chitosan%20scaffold%20features%20after%20different%20post-printing%20gelation%20processes&rft.jtitle=Scientific%20reports&rft.au=Bergonzi,%20Carlo&rft.date=2019-01-23&rft.volume=9&rft.issue=1&rft.spage=362&rft.epage=362&rft.pages=362-362&rft.artnum=362&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36613-8&rft_dat=%3Cproquest_pubme%3E2179430896%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170390104&rft_id=info:pmid/30674919&rfr_iscdi=true |