Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins

DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2019-01, Vol.73 (2), p.199-211.e10
Hauptverfasser: Aria, Valentina, Yeeles, Joseph T.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211.e10
container_issue 2
container_start_page 199
container_title Molecular cell
container_volume 73
creator Aria, Valentina
Yeeles, Joseph T.P.
description DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication system using purified yeast proteins, we have mapped start sites for leading-strand replication. Synthesis is mostly initiated outside the origin sequence. Strikingly, rightward leading strands are primed left of the origin and vice versa. We show that each leading strand is established from a lagging-strand primer synthesized by the replisome on the opposite side of the origin. Preventing elongation of primers synthesized left of the origin blocked rightward leading strands, demonstrating that replisomes are interdependent for leading-strand synthesis establishment. The mechanism we reveal negates the need for dedicated leading-strand priming and necessitates a crucial role for the lagging-strand polymerase Pol δ in connecting the nascent leading strand with the advancing replisome. [Display omitted] •Mapping of leading-strand start sites at two S. cerevisiae DNA replication origins•Leading-strand synthesis is established from “lagging-strand” primers•Pol δ likely plays a key role in establishing all nascent leading strands•Replisomes remain interdependent until new leading strands are established Aria and Yeeles describe the mechanism by which leading-strand replication is established at eukaryotic DNA replication origins. “Lagging-strand” primers, synthesized by replisomes on opposite sides of the origin, are elongated back across the origin by Pol δ until the 3ʹ ends are coupled to Pol ε at the advancing replication forks.
doi_str_mv 10.1016/j.molcel.2018.10.019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276518308797</els_id><sourcerecordid>2135636966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-78cf994dfe1a92a3102c523137208a924d1231dcc3b881560436cd79d3b2a3b33</originalsourceid><addsrcrecordid>eNqFUU2P0zAQtRCIXRb-AUI-cknx2I6TXJCWpXxIhZVYOFuO7bRTErvY6Ur773HVssAFTraf37x5M4-Q58AWwEC92i6mOFo_LjiDtkALBt0Dcg6sayoJSj483Xmj6jPyJOctYyDrtntMzgSTNYBsz8n6k7cbEzBPNA70DTpM3s4YgxnpyhuHYV3dzMkER2_uwrzxGTNd5tn0I-bN5MNMzUyX--8m3cUZLX37-ZJ-8bsRrTnI0OuEawz5KXk0mDH7Z6fzgnx7t_x69aFaXb__eHW5qmyt-Fw1rR26TrrBg-m4EcC4rbkA0XDWFkQ6KC9nrejbFmrFpFDWNZ0TfWH3QlyQ10fd3b6fvLPFYDKj3iWcikMdDeq_fwJu9DreaiWkFKItAi9PAin-2Ps86wlzWfNogo_7rDnnZf1c1PB_KohaCdUpVajySLUp5pz8cO8ImD7Eqbf6GKc-xHlAS5yl7MWf09wX_crv97i-7PQWfdLZog_WH3PULuK_O_wEkD2z3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135636966</pqid></control><display><type>article</type><title>Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Aria, Valentina ; Yeeles, Joseph T.P.</creator><creatorcontrib>Aria, Valentina ; Yeeles, Joseph T.P.</creatorcontrib><description>DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication system using purified yeast proteins, we have mapped start sites for leading-strand replication. Synthesis is mostly initiated outside the origin sequence. Strikingly, rightward leading strands are primed left of the origin and vice versa. We show that each leading strand is established from a lagging-strand primer synthesized by the replisome on the opposite side of the origin. Preventing elongation of primers synthesized left of the origin blocked rightward leading strands, demonstrating that replisomes are interdependent for leading-strand synthesis establishment. The mechanism we reveal negates the need for dedicated leading-strand priming and necessitates a crucial role for the lagging-strand polymerase Pol δ in connecting the nascent leading strand with the advancing replisome. [Display omitted] •Mapping of leading-strand start sites at two S. cerevisiae DNA replication origins•Leading-strand synthesis is established from “lagging-strand” primers•Pol δ likely plays a key role in establishing all nascent leading strands•Replisomes remain interdependent until new leading strands are established Aria and Yeeles describe the mechanism by which leading-strand replication is established at eukaryotic DNA replication origins. “Lagging-strand” primers, synthesized by replisomes on opposite sides of the origin, are elongated back across the origin by Pol δ until the 3ʹ ends are coupled to Pol ε at the advancing replication forks.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2018.10.019</identifier><identifier>PMID: 30451148</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>CMG helicase ; DNA ; DNA polymerase ; DNA replication ; DNA-directed DNA polymerase ; leading-strand synthesis ; primase ; priming ; proteins ; replication fork ; replication origin ; replisome ; yeasts</subject><ispartof>Molecular cell, 2019-01, Vol.73 (2), p.199-211.e10</ispartof><rights>2018 MRC Laboratory of Molecular Biology</rights><rights>Copyright © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 MRC Laboratory of Molecular Biology 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-78cf994dfe1a92a3102c523137208a924d1231dcc3b881560436cd79d3b2a3b33</citedby><cites>FETCH-LOGICAL-c562t-78cf994dfe1a92a3102c523137208a924d1231dcc3b881560436cd79d3b2a3b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276518308797$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30451148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aria, Valentina</creatorcontrib><creatorcontrib>Yeeles, Joseph T.P.</creatorcontrib><title>Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication system using purified yeast proteins, we have mapped start sites for leading-strand replication. Synthesis is mostly initiated outside the origin sequence. Strikingly, rightward leading strands are primed left of the origin and vice versa. We show that each leading strand is established from a lagging-strand primer synthesized by the replisome on the opposite side of the origin. Preventing elongation of primers synthesized left of the origin blocked rightward leading strands, demonstrating that replisomes are interdependent for leading-strand synthesis establishment. The mechanism we reveal negates the need for dedicated leading-strand priming and necessitates a crucial role for the lagging-strand polymerase Pol δ in connecting the nascent leading strand with the advancing replisome. [Display omitted] •Mapping of leading-strand start sites at two S. cerevisiae DNA replication origins•Leading-strand synthesis is established from “lagging-strand” primers•Pol δ likely plays a key role in establishing all nascent leading strands•Replisomes remain interdependent until new leading strands are established Aria and Yeeles describe the mechanism by which leading-strand replication is established at eukaryotic DNA replication origins. “Lagging-strand” primers, synthesized by replisomes on opposite sides of the origin, are elongated back across the origin by Pol δ until the 3ʹ ends are coupled to Pol ε at the advancing replication forks.</description><subject>CMG helicase</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>DNA replication</subject><subject>DNA-directed DNA polymerase</subject><subject>leading-strand synthesis</subject><subject>primase</subject><subject>priming</subject><subject>proteins</subject><subject>replication fork</subject><subject>replication origin</subject><subject>replisome</subject><subject>yeasts</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUU2P0zAQtRCIXRb-AUI-cknx2I6TXJCWpXxIhZVYOFuO7bRTErvY6Ur773HVssAFTraf37x5M4-Q58AWwEC92i6mOFo_LjiDtkALBt0Dcg6sayoJSj483Xmj6jPyJOctYyDrtntMzgSTNYBsz8n6k7cbEzBPNA70DTpM3s4YgxnpyhuHYV3dzMkER2_uwrzxGTNd5tn0I-bN5MNMzUyX--8m3cUZLX37-ZJ-8bsRrTnI0OuEawz5KXk0mDH7Z6fzgnx7t_x69aFaXb__eHW5qmyt-Fw1rR26TrrBg-m4EcC4rbkA0XDWFkQ6KC9nrejbFmrFpFDWNZ0TfWH3QlyQ10fd3b6fvLPFYDKj3iWcikMdDeq_fwJu9DreaiWkFKItAi9PAin-2Ps86wlzWfNogo_7rDnnZf1c1PB_KohaCdUpVajySLUp5pz8cO8ImD7Eqbf6GKc-xHlAS5yl7MWf09wX_crv97i-7PQWfdLZog_WH3PULuK_O_wEkD2z3Q</recordid><startdate>20190117</startdate><enddate>20190117</enddate><creator>Aria, Valentina</creator><creator>Yeeles, Joseph T.P.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190117</creationdate><title>Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins</title><author>Aria, Valentina ; Yeeles, Joseph T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-78cf994dfe1a92a3102c523137208a924d1231dcc3b881560436cd79d3b2a3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CMG helicase</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>DNA replication</topic><topic>DNA-directed DNA polymerase</topic><topic>leading-strand synthesis</topic><topic>primase</topic><topic>priming</topic><topic>proteins</topic><topic>replication fork</topic><topic>replication origin</topic><topic>replisome</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aria, Valentina</creatorcontrib><creatorcontrib>Yeeles, Joseph T.P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aria, Valentina</au><au>Yeeles, Joseph T.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2019-01-17</date><risdate>2019</risdate><volume>73</volume><issue>2</issue><spage>199</spage><epage>211.e10</epage><pages>199-211.e10</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication system using purified yeast proteins, we have mapped start sites for leading-strand replication. Synthesis is mostly initiated outside the origin sequence. Strikingly, rightward leading strands are primed left of the origin and vice versa. We show that each leading strand is established from a lagging-strand primer synthesized by the replisome on the opposite side of the origin. Preventing elongation of primers synthesized left of the origin blocked rightward leading strands, demonstrating that replisomes are interdependent for leading-strand synthesis establishment. The mechanism we reveal negates the need for dedicated leading-strand priming and necessitates a crucial role for the lagging-strand polymerase Pol δ in connecting the nascent leading strand with the advancing replisome. [Display omitted] •Mapping of leading-strand start sites at two S. cerevisiae DNA replication origins•Leading-strand synthesis is established from “lagging-strand” primers•Pol δ likely plays a key role in establishing all nascent leading strands•Replisomes remain interdependent until new leading strands are established Aria and Yeeles describe the mechanism by which leading-strand replication is established at eukaryotic DNA replication origins. “Lagging-strand” primers, synthesized by replisomes on opposite sides of the origin, are elongated back across the origin by Pol δ until the 3ʹ ends are coupled to Pol ε at the advancing replication forks.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30451148</pmid><doi>10.1016/j.molcel.2018.10.019</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2019-01, Vol.73 (2), p.199-211.e10
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344338
source Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects CMG helicase
DNA
DNA polymerase
DNA replication
DNA-directed DNA polymerase
leading-strand synthesis
primase
priming
proteins
replication fork
replication origin
replisome
yeasts
title Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Bidirectional%20Leading-Strand%20Synthesis%20Establishment%20at%20Eukaryotic%20DNA%20Replication%20Origins&rft.jtitle=Molecular%20cell&rft.au=Aria,%20Valentina&rft.date=2019-01-17&rft.volume=73&rft.issue=2&rft.spage=199&rft.epage=211.e10&rft.pages=199-211.e10&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2018.10.019&rft_dat=%3Cproquest_pubme%3E2135636966%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135636966&rft_id=info:pmid/30451148&rft_els_id=S1097276518308797&rfr_iscdi=true