Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production

Black TiO2 nanomaterials have recently emerged as promising candidates for solar-driven photocatalytic hydrogen production. Despite the great efforts to synthesize highly reduced TiO2, it is apparent that intermediate degree of reduction (namely, gray titania) brings about the formation of peculiar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2019-01, Vol.9 (1), p.345-364
Hauptverfasser: Naldoni, Alberto, Altomare, Marco, Zoppellaro, Giorgio, Liu, Ning, Kment, Štěpán, Zbořil, Radek, Schmuki, Patrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue 1
container_start_page 345
container_title ACS catalysis
container_volume 9
creator Naldoni, Alberto
Altomare, Marco
Zoppellaro, Giorgio
Liu, Ning
Kment, Štěpán
Zbořil, Radek
Schmuki, Patrik
description Black TiO2 nanomaterials have recently emerged as promising candidates for solar-driven photocatalytic hydrogen production. Despite the great efforts to synthesize highly reduced TiO2, it is apparent that intermediate degree of reduction (namely, gray titania) brings about the formation of peculiar defective catalytic sites enabling cocatalyst-free hydrogen generation. A precise understanding of the structural and electronic nature of these catalytically active sites is still elusive, as well as the fundamental structure–activity relationships that govern formation of crystal defects, increased light absorption, charge separation, and photocatalytic activity. In this Review, we discuss the basic concepts that underlie an effective design of reduced TiO2 photocatalysts for hydrogen production such as (i) defects formation in reduced TiO2, (ii) analysis of structure deformation and presence of unpaired electrons through electron paramagnetic resonance spectroscopy, (iii) insights from surface science on electronic singularities due to defects, and (iv) the key differences between black and gray titania, that is, photocatalysts that require Pt-modification and cocatalyst-free photocatalytic hydrogen generation. Finally, future directions to improve the performance of reduced TiO2 photocatalysts are outlined.
doi_str_mv 10.1021/acscatal.8b04068
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179464647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-60209adf33bbd2f1c21f6a4e1d4d953a7fdc6ca1cfdd81cf4954c9a6ecdea9e13</originalsourceid><addsrcrecordid>eNpVUUtLAzEQDqLYUnv3mKMHt-a1Lw-CFmuFQotU8BaySbZN3W5qklX6792-QGdgZpj55oOZD4BrjAYYEXwnpJciiGqQFYihJDsDXYLjOIoZjc__1B3Q936FWmNxkqXoEnQoShHGhHbBx2xpg93zbL3x8MeEJXzTqpFawbmZkns4cnYNnyohP_cNGCwcnjZCNHJaw_FWObvQNZw5264GY-srcFGKyuv-MffA--h5PhxHk-nL6_BxEgkSkxAliKBcqJLSolCkxJLgMhFMY8VUHlORlkomUmBZKpW1keUxk7lItFRa5BrTHng48G6aYq2V1HVwouIbZ9bCbbkVhv-f1GbJF_abJ5S1X9sR3BwJnP1qtA98bbzUVSVqbRvPCU5zlrSettDbA7R9PV_ZxtXtZRwjvtODn_TgRz3oL0-0gFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179464647</pqid></control><display><type>article</type><title>Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production</title><source>American Chemical Society Journals</source><creator>Naldoni, Alberto ; Altomare, Marco ; Zoppellaro, Giorgio ; Liu, Ning ; Kment, Štěpán ; Zbořil, Radek ; Schmuki, Patrik</creator><creatorcontrib>Naldoni, Alberto ; Altomare, Marco ; Zoppellaro, Giorgio ; Liu, Ning ; Kment, Štěpán ; Zbořil, Radek ; Schmuki, Patrik</creatorcontrib><description>Black TiO2 nanomaterials have recently emerged as promising candidates for solar-driven photocatalytic hydrogen production. Despite the great efforts to synthesize highly reduced TiO2, it is apparent that intermediate degree of reduction (namely, gray titania) brings about the formation of peculiar defective catalytic sites enabling cocatalyst-free hydrogen generation. A precise understanding of the structural and electronic nature of these catalytically active sites is still elusive, as well as the fundamental structure–activity relationships that govern formation of crystal defects, increased light absorption, charge separation, and photocatalytic activity. In this Review, we discuss the basic concepts that underlie an effective design of reduced TiO2 photocatalysts for hydrogen production such as (i) defects formation in reduced TiO2, (ii) analysis of structure deformation and presence of unpaired electrons through electron paramagnetic resonance spectroscopy, (iii) insights from surface science on electronic singularities due to defects, and (iv) the key differences between black and gray titania, that is, photocatalysts that require Pt-modification and cocatalyst-free photocatalytic hydrogen generation. Finally, future directions to improve the performance of reduced TiO2 photocatalysts are outlined.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.8b04068</identifier><identifier>PMID: 30701123</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Review</subject><ispartof>ACS catalysis, 2019-01, Vol.9 (1), p.345-364</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7237-8809 ; 0000-0002-9208-5771 ; 0000-0001-5932-2125 ; 0000-0002-3147-2196 ; 0000-0003-2304-2564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.8b04068$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.8b04068$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Naldoni, Alberto</creatorcontrib><creatorcontrib>Altomare, Marco</creatorcontrib><creatorcontrib>Zoppellaro, Giorgio</creatorcontrib><creatorcontrib>Liu, Ning</creatorcontrib><creatorcontrib>Kment, Štěpán</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><creatorcontrib>Schmuki, Patrik</creatorcontrib><title>Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Black TiO2 nanomaterials have recently emerged as promising candidates for solar-driven photocatalytic hydrogen production. Despite the great efforts to synthesize highly reduced TiO2, it is apparent that intermediate degree of reduction (namely, gray titania) brings about the formation of peculiar defective catalytic sites enabling cocatalyst-free hydrogen generation. A precise understanding of the structural and electronic nature of these catalytically active sites is still elusive, as well as the fundamental structure–activity relationships that govern formation of crystal defects, increased light absorption, charge separation, and photocatalytic activity. In this Review, we discuss the basic concepts that underlie an effective design of reduced TiO2 photocatalysts for hydrogen production such as (i) defects formation in reduced TiO2, (ii) analysis of structure deformation and presence of unpaired electrons through electron paramagnetic resonance spectroscopy, (iii) insights from surface science on electronic singularities due to defects, and (iv) the key differences between black and gray titania, that is, photocatalysts that require Pt-modification and cocatalyst-free photocatalytic hydrogen generation. Finally, future directions to improve the performance of reduced TiO2 photocatalysts are outlined.</description><subject>Review</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUUtLAzEQDqLYUnv3mKMHt-a1Lw-CFmuFQotU8BaySbZN3W5qklX6792-QGdgZpj55oOZD4BrjAYYEXwnpJciiGqQFYihJDsDXYLjOIoZjc__1B3Q936FWmNxkqXoEnQoShHGhHbBx2xpg93zbL3x8MeEJXzTqpFawbmZkns4cnYNnyohP_cNGCwcnjZCNHJaw_FWObvQNZw5264GY-srcFGKyuv-MffA--h5PhxHk-nL6_BxEgkSkxAliKBcqJLSolCkxJLgMhFMY8VUHlORlkomUmBZKpW1keUxk7lItFRa5BrTHng48G6aYq2V1HVwouIbZ9bCbbkVhv-f1GbJF_abJ5S1X9sR3BwJnP1qtA98bbzUVSVqbRvPCU5zlrSettDbA7R9PV_ZxtXtZRwjvtODn_TgRz3oL0-0gFQ</recordid><startdate>20190104</startdate><enddate>20190104</enddate><creator>Naldoni, Alberto</creator><creator>Altomare, Marco</creator><creator>Zoppellaro, Giorgio</creator><creator>Liu, Ning</creator><creator>Kment, Štěpán</creator><creator>Zbořil, Radek</creator><creator>Schmuki, Patrik</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7237-8809</orcidid><orcidid>https://orcid.org/0000-0002-9208-5771</orcidid><orcidid>https://orcid.org/0000-0001-5932-2125</orcidid><orcidid>https://orcid.org/0000-0002-3147-2196</orcidid><orcidid>https://orcid.org/0000-0003-2304-2564</orcidid></search><sort><creationdate>20190104</creationdate><title>Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production</title><author>Naldoni, Alberto ; Altomare, Marco ; Zoppellaro, Giorgio ; Liu, Ning ; Kment, Štěpán ; Zbořil, Radek ; Schmuki, Patrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-60209adf33bbd2f1c21f6a4e1d4d953a7fdc6ca1cfdd81cf4954c9a6ecdea9e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naldoni, Alberto</creatorcontrib><creatorcontrib>Altomare, Marco</creatorcontrib><creatorcontrib>Zoppellaro, Giorgio</creatorcontrib><creatorcontrib>Liu, Ning</creatorcontrib><creatorcontrib>Kment, Štěpán</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><creatorcontrib>Schmuki, Patrik</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naldoni, Alberto</au><au>Altomare, Marco</au><au>Zoppellaro, Giorgio</au><au>Liu, Ning</au><au>Kment, Štěpán</au><au>Zbořil, Radek</au><au>Schmuki, Patrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2019-01-04</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>345</spage><epage>364</epage><pages>345-364</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Black TiO2 nanomaterials have recently emerged as promising candidates for solar-driven photocatalytic hydrogen production. Despite the great efforts to synthesize highly reduced TiO2, it is apparent that intermediate degree of reduction (namely, gray titania) brings about the formation of peculiar defective catalytic sites enabling cocatalyst-free hydrogen generation. A precise understanding of the structural and electronic nature of these catalytically active sites is still elusive, as well as the fundamental structure–activity relationships that govern formation of crystal defects, increased light absorption, charge separation, and photocatalytic activity. In this Review, we discuss the basic concepts that underlie an effective design of reduced TiO2 photocatalysts for hydrogen production such as (i) defects formation in reduced TiO2, (ii) analysis of structure deformation and presence of unpaired electrons through electron paramagnetic resonance spectroscopy, (iii) insights from surface science on electronic singularities due to defects, and (iv) the key differences between black and gray titania, that is, photocatalysts that require Pt-modification and cocatalyst-free photocatalytic hydrogen generation. Finally, future directions to improve the performance of reduced TiO2 photocatalysts are outlined.</abstract><pub>American Chemical Society</pub><pmid>30701123</pmid><doi>10.1021/acscatal.8b04068</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7237-8809</orcidid><orcidid>https://orcid.org/0000-0002-9208-5771</orcidid><orcidid>https://orcid.org/0000-0001-5932-2125</orcidid><orcidid>https://orcid.org/0000-0002-3147-2196</orcidid><orcidid>https://orcid.org/0000-0003-2304-2564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2019-01, Vol.9 (1), p.345-364
issn 2155-5435
2155-5435
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6344061
source American Chemical Society Journals
subjects Review
title Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocatalysis%20with%20Reduced%20TiO2:%20From%20Black%20TiO2%20to%20Cocatalyst-Free%20Hydrogen%20Production&rft.jtitle=ACS%20catalysis&rft.au=Naldoni,%20Alberto&rft.date=2019-01-04&rft.volume=9&rft.issue=1&rft.spage=345&rft.epage=364&rft.pages=345-364&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.8b04068&rft_dat=%3Cproquest_pubme%3E2179464647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179464647&rft_id=info:pmid/30701123&rfr_iscdi=true