A synthetic-diploid benchmark for accurate variant-calling evaluation

Existing benchmark datasets for use in evaluating variant-calling accuracy are constructed from a consensus of known short-variant callers, and they are thus biased toward easy regions that are accessible by these algorithms. We derived a new benchmark dataset from the de novo PacBio assemblies of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2018-08, Vol.15 (8), p.595-597
Hauptverfasser: Li, Heng, Bloom, Jonathan M., Farjoun, Yossi, Fleharty, Mark, Gauthier, Laura, Neale, Benjamin, MacArthur, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 8
container_start_page 595
container_title Nature methods
container_volume 15
creator Li, Heng
Bloom, Jonathan M.
Farjoun, Yossi
Fleharty, Mark
Gauthier, Laura
Neale, Benjamin
MacArthur, Daniel
description Existing benchmark datasets for use in evaluating variant-calling accuracy are constructed from a consensus of known short-variant callers, and they are thus biased toward easy regions that are accessible by these algorithms. We derived a new benchmark dataset from the de novo PacBio assemblies of two fully homozygous human cell lines, which provides a relatively more accurate and less biased estimate of small-variant-calling error rates in a realistic context. The synthetic-diploid (Syndip) benchmark dataset, constructed from two fully homozygous long-read assemblies, provides more accurate assessments of error rates in small-variant-calling algorithms than existing benchmarks.
doi_str_mv 10.1038/s41592-018-0054-7
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572747096</galeid><sourcerecordid>A572747096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-88e7358efaf4b303fd92a76d15e801fa1d4a73b1854fc76524e70a4c023657713</originalsourceid><addsrcrecordid>eNp1kUtvEzEUhUcIREvhB7BBI7Fh43I9fmaDFFXlIVViA2vL8VwnLo4d7JlI_fd1lD4oAnlhy_c7x773dN1bCucUmP5YORWLgQDVBEBwop51p1RwTRQF8fz-DAt60r2q9RqAMT6Il90JA6AMOD_tLpd9vUnTBqfgyBh2MYexX2Fym60tv3qfS2-dm4udsN_bEmyaiLMxhrTucW_jbKeQ0-vuhbex4pu7_az7-fnyx8VXcvX9y7eL5RVxEthEtEbFhEZvPV8xYH5cDFbJkQrUQL2lI7eKragW3DslxcBRgeUOBiaFUpSddZ-Ovrt5tcXRYZqKjWZXQvvtjck2mKeVFDZmnfdGMk655s3gw51Byb9nrJPZhuowRpswz9UMoKiQXFLR0Pd_odd5Lqm11ygNSnOQ7JFa24gmJJ_bu-5gapZCDYq38ctGnf-DamvEbXA5oQ_t_omAHgWu5FoL-oceKZhD9uaYvWnZm0P2RjXNuz-H86C4D7sBwxGorZTWWB47-r_rLUoxt9c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080784063</pqid></control><display><type>article</type><title>A synthetic-diploid benchmark for accurate variant-calling evaluation</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Li, Heng ; Bloom, Jonathan M. ; Farjoun, Yossi ; Fleharty, Mark ; Gauthier, Laura ; Neale, Benjamin ; MacArthur, Daniel</creator><creatorcontrib>Li, Heng ; Bloom, Jonathan M. ; Farjoun, Yossi ; Fleharty, Mark ; Gauthier, Laura ; Neale, Benjamin ; MacArthur, Daniel</creatorcontrib><description>Existing benchmark datasets for use in evaluating variant-calling accuracy are constructed from a consensus of known short-variant callers, and they are thus biased toward easy regions that are accessible by these algorithms. We derived a new benchmark dataset from the de novo PacBio assemblies of two fully homozygous human cell lines, which provides a relatively more accurate and less biased estimate of small-variant-calling error rates in a realistic context. The synthetic-diploid (Syndip) benchmark dataset, constructed from two fully homozygous long-read assemblies, provides more accurate assessments of error rates in small-variant-calling algorithms than existing benchmarks.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-018-0054-7</identifier><identifier>PMID: 30013044</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/2416 ; 631/114/2785 ; Accuracy ; Algorithms ; Benchmarking ; Benchmarks ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Brief Communication ; Cell Line, Tumor ; Cell lines ; Cells (Biology) ; Databases, Genetic - standards ; Databases, Genetic - statistics &amp; numerical data ; Datasets ; Diploidy ; DNA sequencing ; Female ; Genetic polymorphisms ; Genetic Variation ; Genome, Human ; Genomes ; Genomics ; Homozygote ; Humans ; Hydatidiform Mole - genetics ; Life Sciences ; Population genetics ; Pregnancy ; Proteomics ; Single nucleotide polymorphisms ; Synthetic Biology ; Uterine Neoplasms - genetics ; Whole Genome Sequencing - statistics &amp; numerical data</subject><ispartof>Nature methods, 2018-08, Vol.15 (8), p.595-597</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-88e7358efaf4b303fd92a76d15e801fa1d4a73b1854fc76524e70a4c023657713</citedby><cites>FETCH-LOGICAL-c603t-88e7358efaf4b303fd92a76d15e801fa1d4a73b1854fc76524e70a4c023657713</cites><orcidid>0000-0002-5771-2290 ; 0000-0003-4874-2874 ; 0000-0002-7002-2868 ; 0000-0001-8497-1434 ; 0000-0003-1513-6077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-018-0054-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-018-0054-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30013044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Bloom, Jonathan M.</creatorcontrib><creatorcontrib>Farjoun, Yossi</creatorcontrib><creatorcontrib>Fleharty, Mark</creatorcontrib><creatorcontrib>Gauthier, Laura</creatorcontrib><creatorcontrib>Neale, Benjamin</creatorcontrib><creatorcontrib>MacArthur, Daniel</creatorcontrib><title>A synthetic-diploid benchmark for accurate variant-calling evaluation</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Existing benchmark datasets for use in evaluating variant-calling accuracy are constructed from a consensus of known short-variant callers, and they are thus biased toward easy regions that are accessible by these algorithms. We derived a new benchmark dataset from the de novo PacBio assemblies of two fully homozygous human cell lines, which provides a relatively more accurate and less biased estimate of small-variant-calling error rates in a realistic context. The synthetic-diploid (Syndip) benchmark dataset, constructed from two fully homozygous long-read assemblies, provides more accurate assessments of error rates in small-variant-calling algorithms than existing benchmarks.</description><subject>631/114/2416</subject><subject>631/114/2785</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Brief Communication</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cells (Biology)</subject><subject>Databases, Genetic - standards</subject><subject>Databases, Genetic - statistics &amp; numerical data</subject><subject>Datasets</subject><subject>Diploidy</subject><subject>DNA sequencing</subject><subject>Female</subject><subject>Genetic polymorphisms</subject><subject>Genetic Variation</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Hydatidiform Mole - genetics</subject><subject>Life Sciences</subject><subject>Population genetics</subject><subject>Pregnancy</subject><subject>Proteomics</subject><subject>Single nucleotide polymorphisms</subject><subject>Synthetic Biology</subject><subject>Uterine Neoplasms - genetics</subject><subject>Whole Genome Sequencing - statistics &amp; numerical data</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtvEzEUhUcIREvhB7BBI7Fh43I9fmaDFFXlIVViA2vL8VwnLo4d7JlI_fd1lD4oAnlhy_c7x773dN1bCucUmP5YORWLgQDVBEBwop51p1RwTRQF8fz-DAt60r2q9RqAMT6Il90JA6AMOD_tLpd9vUnTBqfgyBh2MYexX2Fym60tv3qfS2-dm4udsN_bEmyaiLMxhrTucW_jbKeQ0-vuhbex4pu7_az7-fnyx8VXcvX9y7eL5RVxEthEtEbFhEZvPV8xYH5cDFbJkQrUQL2lI7eKragW3DslxcBRgeUOBiaFUpSddZ-Ovrt5tcXRYZqKjWZXQvvtjck2mKeVFDZmnfdGMk655s3gw51Byb9nrJPZhuowRpswz9UMoKiQXFLR0Pd_odd5Lqm11ygNSnOQ7JFa24gmJJ_bu-5gapZCDYq38ctGnf-DamvEbXA5oQ_t_omAHgWu5FoL-oceKZhD9uaYvWnZm0P2RjXNuz-H86C4D7sBwxGorZTWWB47-r_rLUoxt9c</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Li, Heng</creator><creator>Bloom, Jonathan M.</creator><creator>Farjoun, Yossi</creator><creator>Fleharty, Mark</creator><creator>Gauthier, Laura</creator><creator>Neale, Benjamin</creator><creator>MacArthur, Daniel</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5771-2290</orcidid><orcidid>https://orcid.org/0000-0003-4874-2874</orcidid><orcidid>https://orcid.org/0000-0002-7002-2868</orcidid><orcidid>https://orcid.org/0000-0001-8497-1434</orcidid><orcidid>https://orcid.org/0000-0003-1513-6077</orcidid></search><sort><creationdate>20180801</creationdate><title>A synthetic-diploid benchmark for accurate variant-calling evaluation</title><author>Li, Heng ; Bloom, Jonathan M. ; Farjoun, Yossi ; Fleharty, Mark ; Gauthier, Laura ; Neale, Benjamin ; MacArthur, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-88e7358efaf4b303fd92a76d15e801fa1d4a73b1854fc76524e70a4c023657713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/114/2416</topic><topic>631/114/2785</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Brief Communication</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cells (Biology)</topic><topic>Databases, Genetic - standards</topic><topic>Databases, Genetic - statistics &amp; numerical data</topic><topic>Datasets</topic><topic>Diploidy</topic><topic>DNA sequencing</topic><topic>Female</topic><topic>Genetic polymorphisms</topic><topic>Genetic Variation</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Hydatidiform Mole - genetics</topic><topic>Life Sciences</topic><topic>Population genetics</topic><topic>Pregnancy</topic><topic>Proteomics</topic><topic>Single nucleotide polymorphisms</topic><topic>Synthetic Biology</topic><topic>Uterine Neoplasms - genetics</topic><topic>Whole Genome Sequencing - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Bloom, Jonathan M.</creatorcontrib><creatorcontrib>Farjoun, Yossi</creatorcontrib><creatorcontrib>Fleharty, Mark</creatorcontrib><creatorcontrib>Gauthier, Laura</creatorcontrib><creatorcontrib>Neale, Benjamin</creatorcontrib><creatorcontrib>MacArthur, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Heng</au><au>Bloom, Jonathan M.</au><au>Farjoun, Yossi</au><au>Fleharty, Mark</au><au>Gauthier, Laura</au><au>Neale, Benjamin</au><au>MacArthur, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synthetic-diploid benchmark for accurate variant-calling evaluation</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>15</volume><issue>8</issue><spage>595</spage><epage>597</epage><pages>595-597</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Existing benchmark datasets for use in evaluating variant-calling accuracy are constructed from a consensus of known short-variant callers, and they are thus biased toward easy regions that are accessible by these algorithms. We derived a new benchmark dataset from the de novo PacBio assemblies of two fully homozygous human cell lines, which provides a relatively more accurate and less biased estimate of small-variant-calling error rates in a realistic context. The synthetic-diploid (Syndip) benchmark dataset, constructed from two fully homozygous long-read assemblies, provides more accurate assessments of error rates in small-variant-calling algorithms than existing benchmarks.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30013044</pmid><doi>10.1038/s41592-018-0054-7</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-5771-2290</orcidid><orcidid>https://orcid.org/0000-0003-4874-2874</orcidid><orcidid>https://orcid.org/0000-0002-7002-2868</orcidid><orcidid>https://orcid.org/0000-0001-8497-1434</orcidid><orcidid>https://orcid.org/0000-0003-1513-6077</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2018-08, Vol.15 (8), p.595-597
issn 1548-7091
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341484
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/114/2416
631/114/2785
Accuracy
Algorithms
Benchmarking
Benchmarks
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Brief Communication
Cell Line, Tumor
Cell lines
Cells (Biology)
Databases, Genetic - standards
Databases, Genetic - statistics & numerical data
Datasets
Diploidy
DNA sequencing
Female
Genetic polymorphisms
Genetic Variation
Genome, Human
Genomes
Genomics
Homozygote
Humans
Hydatidiform Mole - genetics
Life Sciences
Population genetics
Pregnancy
Proteomics
Single nucleotide polymorphisms
Synthetic Biology
Uterine Neoplasms - genetics
Whole Genome Sequencing - statistics & numerical data
title A synthetic-diploid benchmark for accurate variant-calling evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synthetic-diploid%20benchmark%20for%20accurate%20variant-calling%20evaluation&rft.jtitle=Nature%20methods&rft.au=Li,%20Heng&rft.date=2018-08-01&rft.volume=15&rft.issue=8&rft.spage=595&rft.epage=597&rft.pages=595-597&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-018-0054-7&rft_dat=%3Cgale_pubme%3EA572747096%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080784063&rft_id=info:pmid/30013044&rft_galeid=A572747096&rfr_iscdi=true