A Network Analysis of Biomarkers for Type 2 Diabetes

Numerous studies have investigated individual biomarkers in relation to risk of type 2 diabetes. However, few have considered the interconnectivity of these biomarkers in the etiology of diabetes as well as the potential changes in the biomarker correlation network during diabetes development. We co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2019-02, Vol.68 (2), p.281-290
Hauptverfasser: Huang, Tianyi, Glass, Kimberly, Zeleznik, Oana A, Kang, Jae H, Ivey, Kerry L, Sonawane, Abhijeet R, Birmann, Brenda M, Hersh, Craig P, Hu, Frank B, Tworoger, Shelley S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 2
container_start_page 281
container_title Diabetes (New York, N.Y.)
container_volume 68
creator Huang, Tianyi
Glass, Kimberly
Zeleznik, Oana A
Kang, Jae H
Ivey, Kerry L
Sonawane, Abhijeet R
Birmann, Brenda M
Hersh, Craig P
Hu, Frank B
Tworoger, Shelley S
description Numerous studies have investigated individual biomarkers in relation to risk of type 2 diabetes. However, few have considered the interconnectivity of these biomarkers in the etiology of diabetes as well as the potential changes in the biomarker correlation network during diabetes development. We conducted a secondary analysis of 27 plasma biomarkers representing glucose metabolism, inflammation, adipokines, endothelial dysfunction, IGF axis, and iron store plus age and BMI at blood collection from an existing case-control study nested in the Nurses' Health Study (NHS), including 1,303 incident diabetes case subjects and 1,627 healthy women. A correlation network was constructed based on pairwise Spearman correlations of the above factors that were statistically different between case and noncase subjects using permutation tests ( < 0.0005). We further evaluated the network structure separately among diabetes case subjects diagnosed 10 years after blood collection versus noncase subjects. Although pairwise biomarker correlations tended to have similar directions comparing diabetes case subjects to noncase subjects, most correlations were stronger in noncase than in case subjects, with the largest differences observed for the insulin/HbA and leptin/adiponectin correlations. Leptin and soluble leptin receptor were two hubs of the network, with large numbers of different correlations with other biomarkers in case versus noncase subjects. When examining the correlation network by timing of diabetes onset, there were more perturbations in the network for case subjects diagnosed >10 years versus
doi_str_mv 10.2337/db18-0892
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184099123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a9b9415051d5b7ef3c4a07c011a3fcca8ee78b8165b276201294be490216243a3</originalsourceid><addsrcrecordid>eNpdkU9LwzAchoMobk4PfgEpeNFD9Zc_bZqLMOdfGHqZ4C0kXardumYmrbJvb8rmUMnhd8jDy8P7InSM4YJQyi-nGmcxZILsoD4WVMSU8Ndd1AfAJMZc8B468H4GAGl4-6hHgYHgGe0jNoyeTPNl3Twa1qpa-dJHtoiuS7tQbm6cjwrroslqaSIS3ZRKm8b4Q7RXqMqbo80doJe728noIR4_3z-OhuM4Z0CbWAktGE4gwdNEc1PQnCngOWCsaJHnKjOGZzrDaaIJT0mQFUwbJoDglDCq6ABdrXOXrV6YaW7qxqlKLl0Z5FbSqlL-_anLd_lmP2VKGaaQhYCzTYCzH63xjVyUPjdVpWpjWy8JpoTwBEMa0NN_6My2LlTSUVmoS-DQ9QCdr6ncWe-dKbYyGGS3hey2kN0WgT35bb8lf8qn32PJgdI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184099123</pqid></control><display><type>article</type><title>A Network Analysis of Biomarkers for Type 2 Diabetes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Huang, Tianyi ; Glass, Kimberly ; Zeleznik, Oana A ; Kang, Jae H ; Ivey, Kerry L ; Sonawane, Abhijeet R ; Birmann, Brenda M ; Hersh, Craig P ; Hu, Frank B ; Tworoger, Shelley S</creator><creatorcontrib>Huang, Tianyi ; Glass, Kimberly ; Zeleznik, Oana A ; Kang, Jae H ; Ivey, Kerry L ; Sonawane, Abhijeet R ; Birmann, Brenda M ; Hersh, Craig P ; Hu, Frank B ; Tworoger, Shelley S</creatorcontrib><description>Numerous studies have investigated individual biomarkers in relation to risk of type 2 diabetes. However, few have considered the interconnectivity of these biomarkers in the etiology of diabetes as well as the potential changes in the biomarker correlation network during diabetes development. We conducted a secondary analysis of 27 plasma biomarkers representing glucose metabolism, inflammation, adipokines, endothelial dysfunction, IGF axis, and iron store plus age and BMI at blood collection from an existing case-control study nested in the Nurses' Health Study (NHS), including 1,303 incident diabetes case subjects and 1,627 healthy women. A correlation network was constructed based on pairwise Spearman correlations of the above factors that were statistically different between case and noncase subjects using permutation tests ( &lt; 0.0005). We further evaluated the network structure separately among diabetes case subjects diagnosed &lt;5, 5-10, and &gt;10 years after blood collection versus noncase subjects. Although pairwise biomarker correlations tended to have similar directions comparing diabetes case subjects to noncase subjects, most correlations were stronger in noncase than in case subjects, with the largest differences observed for the insulin/HbA and leptin/adiponectin correlations. Leptin and soluble leptin receptor were two hubs of the network, with large numbers of different correlations with other biomarkers in case versus noncase subjects. When examining the correlation network by timing of diabetes onset, there were more perturbations in the network for case subjects diagnosed &gt;10 years versus &lt;5 years after blood collection, with consistent differential correlations of insulin and HbA C-peptide was the most highly connected node in the early-stage network, whereas leptin was the hub for mid- or late-stage networks. Our results suggest that perturbations of the diabetes-related biomarker network may occur decades prior to clinical recognition. In addition to the persistent dysregulation between insulin and HbA , our results highlight the central role of the leptin system in diabetes development.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db18-0892</identifier><identifier>PMID: 30409783</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Adiponectin ; Adiponectin - blood ; Adult ; Biomarkers ; Biomarkers - blood ; Biomarkers - metabolism ; Blood ; Blood Glucose - analysis ; C-Peptide - blood ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - blood ; Diabetes Mellitus, Type 2 - metabolism ; Etiology ; Female ; Glucose metabolism ; Glycated Hemoglobin A - analysis ; Humans ; Insulin ; Insulin - blood ; Insulin-like growth factors ; Leptin - blood ; Metabolism ; Middle Aged ; Receptors, Leptin - blood ; Surveys and Questionnaires</subject><ispartof>Diabetes (New York, N.Y.), 2019-02, Vol.68 (2), p.281-290</ispartof><rights>2018 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Feb 1, 2019</rights><rights>2018 by the American Diabetes Association. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a9b9415051d5b7ef3c4a07c011a3fcca8ee78b8165b276201294be490216243a3</citedby><cites>FETCH-LOGICAL-c403t-a9b9415051d5b7ef3c4a07c011a3fcca8ee78b8165b276201294be490216243a3</cites><orcidid>0000-0002-6986-7046 ; 0000-0001-8420-9167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341308/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341308/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30409783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Tianyi</creatorcontrib><creatorcontrib>Glass, Kimberly</creatorcontrib><creatorcontrib>Zeleznik, Oana A</creatorcontrib><creatorcontrib>Kang, Jae H</creatorcontrib><creatorcontrib>Ivey, Kerry L</creatorcontrib><creatorcontrib>Sonawane, Abhijeet R</creatorcontrib><creatorcontrib>Birmann, Brenda M</creatorcontrib><creatorcontrib>Hersh, Craig P</creatorcontrib><creatorcontrib>Hu, Frank B</creatorcontrib><creatorcontrib>Tworoger, Shelley S</creatorcontrib><title>A Network Analysis of Biomarkers for Type 2 Diabetes</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Numerous studies have investigated individual biomarkers in relation to risk of type 2 diabetes. However, few have considered the interconnectivity of these biomarkers in the etiology of diabetes as well as the potential changes in the biomarker correlation network during diabetes development. We conducted a secondary analysis of 27 plasma biomarkers representing glucose metabolism, inflammation, adipokines, endothelial dysfunction, IGF axis, and iron store plus age and BMI at blood collection from an existing case-control study nested in the Nurses' Health Study (NHS), including 1,303 incident diabetes case subjects and 1,627 healthy women. A correlation network was constructed based on pairwise Spearman correlations of the above factors that were statistically different between case and noncase subjects using permutation tests ( &lt; 0.0005). We further evaluated the network structure separately among diabetes case subjects diagnosed &lt;5, 5-10, and &gt;10 years after blood collection versus noncase subjects. Although pairwise biomarker correlations tended to have similar directions comparing diabetes case subjects to noncase subjects, most correlations were stronger in noncase than in case subjects, with the largest differences observed for the insulin/HbA and leptin/adiponectin correlations. Leptin and soluble leptin receptor were two hubs of the network, with large numbers of different correlations with other biomarkers in case versus noncase subjects. When examining the correlation network by timing of diabetes onset, there were more perturbations in the network for case subjects diagnosed &gt;10 years versus &lt;5 years after blood collection, with consistent differential correlations of insulin and HbA C-peptide was the most highly connected node in the early-stage network, whereas leptin was the hub for mid- or late-stage networks. Our results suggest that perturbations of the diabetes-related biomarker network may occur decades prior to clinical recognition. In addition to the persistent dysregulation between insulin and HbA , our results highlight the central role of the leptin system in diabetes development.</description><subject>Adiponectin</subject><subject>Adiponectin - blood</subject><subject>Adult</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biomarkers - metabolism</subject><subject>Blood</subject><subject>Blood Glucose - analysis</subject><subject>C-Peptide - blood</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - blood</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Etiology</subject><subject>Female</subject><subject>Glucose metabolism</subject><subject>Glycated Hemoglobin A - analysis</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - blood</subject><subject>Insulin-like growth factors</subject><subject>Leptin - blood</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Receptors, Leptin - blood</subject><subject>Surveys and Questionnaires</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9LwzAchoMobk4PfgEpeNFD9Zc_bZqLMOdfGHqZ4C0kXardumYmrbJvb8rmUMnhd8jDy8P7InSM4YJQyi-nGmcxZILsoD4WVMSU8Ndd1AfAJMZc8B468H4GAGl4-6hHgYHgGe0jNoyeTPNl3Twa1qpa-dJHtoiuS7tQbm6cjwrroslqaSIS3ZRKm8b4Q7RXqMqbo80doJe728noIR4_3z-OhuM4Z0CbWAktGE4gwdNEc1PQnCngOWCsaJHnKjOGZzrDaaIJT0mQFUwbJoDglDCq6ABdrXOXrV6YaW7qxqlKLl0Z5FbSqlL-_anLd_lmP2VKGaaQhYCzTYCzH63xjVyUPjdVpWpjWy8JpoTwBEMa0NN_6My2LlTSUVmoS-DQ9QCdr6ncWe-dKbYyGGS3hey2kN0WgT35bb8lf8qn32PJgdI</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Huang, Tianyi</creator><creator>Glass, Kimberly</creator><creator>Zeleznik, Oana A</creator><creator>Kang, Jae H</creator><creator>Ivey, Kerry L</creator><creator>Sonawane, Abhijeet R</creator><creator>Birmann, Brenda M</creator><creator>Hersh, Craig P</creator><creator>Hu, Frank B</creator><creator>Tworoger, Shelley S</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6986-7046</orcidid><orcidid>https://orcid.org/0000-0001-8420-9167</orcidid></search><sort><creationdate>20190201</creationdate><title>A Network Analysis of Biomarkers for Type 2 Diabetes</title><author>Huang, Tianyi ; Glass, Kimberly ; Zeleznik, Oana A ; Kang, Jae H ; Ivey, Kerry L ; Sonawane, Abhijeet R ; Birmann, Brenda M ; Hersh, Craig P ; Hu, Frank B ; Tworoger, Shelley S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a9b9415051d5b7ef3c4a07c011a3fcca8ee78b8165b276201294be490216243a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adiponectin</topic><topic>Adiponectin - blood</topic><topic>Adult</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biomarkers - metabolism</topic><topic>Blood</topic><topic>Blood Glucose - analysis</topic><topic>C-Peptide - blood</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - blood</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Etiology</topic><topic>Female</topic><topic>Glucose metabolism</topic><topic>Glycated Hemoglobin A - analysis</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - blood</topic><topic>Insulin-like growth factors</topic><topic>Leptin - blood</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Receptors, Leptin - blood</topic><topic>Surveys and Questionnaires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Tianyi</creatorcontrib><creatorcontrib>Glass, Kimberly</creatorcontrib><creatorcontrib>Zeleznik, Oana A</creatorcontrib><creatorcontrib>Kang, Jae H</creatorcontrib><creatorcontrib>Ivey, Kerry L</creatorcontrib><creatorcontrib>Sonawane, Abhijeet R</creatorcontrib><creatorcontrib>Birmann, Brenda M</creatorcontrib><creatorcontrib>Hersh, Craig P</creatorcontrib><creatorcontrib>Hu, Frank B</creatorcontrib><creatorcontrib>Tworoger, Shelley S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Tianyi</au><au>Glass, Kimberly</au><au>Zeleznik, Oana A</au><au>Kang, Jae H</au><au>Ivey, Kerry L</au><au>Sonawane, Abhijeet R</au><au>Birmann, Brenda M</au><au>Hersh, Craig P</au><au>Hu, Frank B</au><au>Tworoger, Shelley S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Network Analysis of Biomarkers for Type 2 Diabetes</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>68</volume><issue>2</issue><spage>281</spage><epage>290</epage><pages>281-290</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Numerous studies have investigated individual biomarkers in relation to risk of type 2 diabetes. However, few have considered the interconnectivity of these biomarkers in the etiology of diabetes as well as the potential changes in the biomarker correlation network during diabetes development. We conducted a secondary analysis of 27 plasma biomarkers representing glucose metabolism, inflammation, adipokines, endothelial dysfunction, IGF axis, and iron store plus age and BMI at blood collection from an existing case-control study nested in the Nurses' Health Study (NHS), including 1,303 incident diabetes case subjects and 1,627 healthy women. A correlation network was constructed based on pairwise Spearman correlations of the above factors that were statistically different between case and noncase subjects using permutation tests ( &lt; 0.0005). We further evaluated the network structure separately among diabetes case subjects diagnosed &lt;5, 5-10, and &gt;10 years after blood collection versus noncase subjects. Although pairwise biomarker correlations tended to have similar directions comparing diabetes case subjects to noncase subjects, most correlations were stronger in noncase than in case subjects, with the largest differences observed for the insulin/HbA and leptin/adiponectin correlations. Leptin and soluble leptin receptor were two hubs of the network, with large numbers of different correlations with other biomarkers in case versus noncase subjects. When examining the correlation network by timing of diabetes onset, there were more perturbations in the network for case subjects diagnosed &gt;10 years versus &lt;5 years after blood collection, with consistent differential correlations of insulin and HbA C-peptide was the most highly connected node in the early-stage network, whereas leptin was the hub for mid- or late-stage networks. Our results suggest that perturbations of the diabetes-related biomarker network may occur decades prior to clinical recognition. In addition to the persistent dysregulation between insulin and HbA , our results highlight the central role of the leptin system in diabetes development.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>30409783</pmid><doi>10.2337/db18-0892</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6986-7046</orcidid><orcidid>https://orcid.org/0000-0001-8420-9167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2019-02, Vol.68 (2), p.281-290
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341308
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adiponectin
Adiponectin - blood
Adult
Biomarkers
Biomarkers - blood
Biomarkers - metabolism
Blood
Blood Glucose - analysis
C-Peptide - blood
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - metabolism
Etiology
Female
Glucose metabolism
Glycated Hemoglobin A - analysis
Humans
Insulin
Insulin - blood
Insulin-like growth factors
Leptin - blood
Metabolism
Middle Aged
Receptors, Leptin - blood
Surveys and Questionnaires
title A Network Analysis of Biomarkers for Type 2 Diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Network%20Analysis%20of%20Biomarkers%20for%20Type%202%20Diabetes&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Huang,%20Tianyi&rft.date=2019-02-01&rft.volume=68&rft.issue=2&rft.spage=281&rft.epage=290&rft.pages=281-290&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db18-0892&rft_dat=%3Cproquest_pubme%3E2184099123%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184099123&rft_id=info:pmid/30409783&rfr_iscdi=true