Dynamic Contrast-Enhanced MRI of OATP Dysfunction in Diabetes

Diabetes is associated with hepatic metabolic dysfunction predisposing patients to drug-induced liver injury. Mouse models of type 2 diabetes (T2D) have dramatically reduced expression of organic anion transporting polypeptide (OATP)1A1, a transporter expressed in hepatocytes and in the kidneys. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2019-02, Vol.68 (2), p.271-280
Hauptverfasser: Shuboni-Mulligan, Dorela D, Parys, Maciej, Blanco-Fernandez, Barbara, Mallett, Christiane L, Schnegelberger, Regina, Takada, Marilia, Chakravarty, Shatadru, Hagenbuch, Bruno, Shapiro, Erik M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 2
container_start_page 271
container_title Diabetes (New York, N.Y.)
container_volume 68
creator Shuboni-Mulligan, Dorela D
Parys, Maciej
Blanco-Fernandez, Barbara
Mallett, Christiane L
Schnegelberger, Regina
Takada, Marilia
Chakravarty, Shatadru
Hagenbuch, Bruno
Shapiro, Erik M
description Diabetes is associated with hepatic metabolic dysfunction predisposing patients to drug-induced liver injury. Mouse models of type 2 diabetes (T2D) have dramatically reduced expression of organic anion transporting polypeptide (OATP)1A1, a transporter expressed in hepatocytes and in the kidneys. The effects of diabetes on OATP1B2 expression are less studied and less consistent. OATP1A1 and OATP1B2 both transport endogenous substrates such as bile acids and hormone conjugates as well as numerous drugs including gadoxetate disodium (Gd-EOB-DTPA). As master pharmacokinetic regulators, the altered expression of OATPs in diabetes could have a profound and clinically significant influence on drug therapies. Here, we report a method to noninvasively measure OATP activity in T2D mice by quantifying the transport of hepatobiliary-specific gadolinium-based contrast agents (GBCAs) within the liver and kidneys using dynamic contrast-enhanced MRI (DCE-MRI). By comparing GBCA uptake in control and OATP knockout mice, we confirmed liver clearance of the hepatobiliary-specific GBCAs, Gd-EOB-DTPA, and gadobenate dimeglumine, primarily though OATP transporters. Then, we measured a reduction in the hepatic uptake of these hepatobiliary GBCAs in T2D / mice, which mirrored significant reductions in the mRNA and protein expression of OATP1A1 and OATP1B2. As these GBCAs are U.S. Food and Drug Administration-approved agents and DCE-MRI is a standard clinical protocol, studies to determine OATP1B1/1B3 deficiencies in human individuals with diabetes can be easily envisioned.
doi_str_mv 10.2337/db18-0525
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139565243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-25581012368a4d6d2bdc0b2b64feae38077389324dd7747ca554ec5d5a84f6de3</originalsourceid><addsrcrecordid>eNpdkc1Kw0AURgdRbK0ufAEJuNFFdH4zyUKhtFULlYpUcDdMZiY2JZmpmUTo25vQWlTu4i7u4eO7HADOEbzBhPBbnaI4hAyzA9BHCUlCgvn7IehDiHCIeMJ74MT7FYQwaucY9AikMccR7oO78cbKMlfByNm6kr4OJ3YprTI6eH6dBi4L5sPFSzDe-Kyxqs6dDXIbjHOZmtr4U3CUycKbs90egLeHyWL0FM7mj9PRcBYqCkkdYsZi1HYhUSypjjROtYIpTiOaGWlIDDkncUIw1ZpzypVkjBrFNJMxzSJtyADcb3PXTVoarUzXtRDrKi9ltRFO5uLvxeZL8eG-REQoIpC1AVe7gMp9NsbXosy9MkUhrXGNFxiRhEUMU9Kil__QlWsq277XUjGFSULbzAG43lKqct5XJtuXQVB0UkQnRXRSWvbid_s9-WOBfAPmbYV4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184099441</pqid></control><display><type>article</type><title>Dynamic Contrast-Enhanced MRI of OATP Dysfunction in Diabetes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Shuboni-Mulligan, Dorela D ; Parys, Maciej ; Blanco-Fernandez, Barbara ; Mallett, Christiane L ; Schnegelberger, Regina ; Takada, Marilia ; Chakravarty, Shatadru ; Hagenbuch, Bruno ; Shapiro, Erik M</creator><creatorcontrib>Shuboni-Mulligan, Dorela D ; Parys, Maciej ; Blanco-Fernandez, Barbara ; Mallett, Christiane L ; Schnegelberger, Regina ; Takada, Marilia ; Chakravarty, Shatadru ; Hagenbuch, Bruno ; Shapiro, Erik M</creatorcontrib><description>Diabetes is associated with hepatic metabolic dysfunction predisposing patients to drug-induced liver injury. Mouse models of type 2 diabetes (T2D) have dramatically reduced expression of organic anion transporting polypeptide (OATP)1A1, a transporter expressed in hepatocytes and in the kidneys. The effects of diabetes on OATP1B2 expression are less studied and less consistent. OATP1A1 and OATP1B2 both transport endogenous substrates such as bile acids and hormone conjugates as well as numerous drugs including gadoxetate disodium (Gd-EOB-DTPA). As master pharmacokinetic regulators, the altered expression of OATPs in diabetes could have a profound and clinically significant influence on drug therapies. Here, we report a method to noninvasively measure OATP activity in T2D mice by quantifying the transport of hepatobiliary-specific gadolinium-based contrast agents (GBCAs) within the liver and kidneys using dynamic contrast-enhanced MRI (DCE-MRI). By comparing GBCA uptake in control and OATP knockout mice, we confirmed liver clearance of the hepatobiliary-specific GBCAs, Gd-EOB-DTPA, and gadobenate dimeglumine, primarily though OATP transporters. Then, we measured a reduction in the hepatic uptake of these hepatobiliary GBCAs in T2D / mice, which mirrored significant reductions in the mRNA and protein expression of OATP1A1 and OATP1B2. As these GBCAs are U.S. Food and Drug Administration-approved agents and DCE-MRI is a standard clinical protocol, studies to determine OATP1B1/1B3 deficiencies in human individuals with diabetes can be easily envisioned.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db18-0525</identifier><identifier>PMID: 30487262</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Animal models ; Animals ; Bile ; Bile acids ; Contrast Media - chemistry ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - metabolism ; Drug therapy ; Gadolinium ; Gadolinium DTPA ; Gene expression ; Hepatocytes ; Kidneys ; Liver ; Liver-Specific Organic Anion Transporter 1 - metabolism ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mice ; Mice, Knockout ; mRNA ; Organic Anion Transporters - metabolism ; Organic anion transporting polypeptide ; Organic Cation Transport Proteins - metabolism ; Technological Advances</subject><ispartof>Diabetes (New York, N.Y.), 2019-02, Vol.68 (2), p.271-280</ispartof><rights>2018 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Feb 1, 2019</rights><rights>2018 by the American Diabetes Association. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-25581012368a4d6d2bdc0b2b64feae38077389324dd7747ca554ec5d5a84f6de3</citedby><cites>FETCH-LOGICAL-c403t-25581012368a4d6d2bdc0b2b64feae38077389324dd7747ca554ec5d5a84f6de3</cites><orcidid>0000-0003-4456-3369 ; 0000-0002-0901-5781 ; 0000-0002-2938-8630 ; 0000-0003-0855-318X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341305/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341305/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30487262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shuboni-Mulligan, Dorela D</creatorcontrib><creatorcontrib>Parys, Maciej</creatorcontrib><creatorcontrib>Blanco-Fernandez, Barbara</creatorcontrib><creatorcontrib>Mallett, Christiane L</creatorcontrib><creatorcontrib>Schnegelberger, Regina</creatorcontrib><creatorcontrib>Takada, Marilia</creatorcontrib><creatorcontrib>Chakravarty, Shatadru</creatorcontrib><creatorcontrib>Hagenbuch, Bruno</creatorcontrib><creatorcontrib>Shapiro, Erik M</creatorcontrib><title>Dynamic Contrast-Enhanced MRI of OATP Dysfunction in Diabetes</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Diabetes is associated with hepatic metabolic dysfunction predisposing patients to drug-induced liver injury. Mouse models of type 2 diabetes (T2D) have dramatically reduced expression of organic anion transporting polypeptide (OATP)1A1, a transporter expressed in hepatocytes and in the kidneys. The effects of diabetes on OATP1B2 expression are less studied and less consistent. OATP1A1 and OATP1B2 both transport endogenous substrates such as bile acids and hormone conjugates as well as numerous drugs including gadoxetate disodium (Gd-EOB-DTPA). As master pharmacokinetic regulators, the altered expression of OATPs in diabetes could have a profound and clinically significant influence on drug therapies. Here, we report a method to noninvasively measure OATP activity in T2D mice by quantifying the transport of hepatobiliary-specific gadolinium-based contrast agents (GBCAs) within the liver and kidneys using dynamic contrast-enhanced MRI (DCE-MRI). By comparing GBCA uptake in control and OATP knockout mice, we confirmed liver clearance of the hepatobiliary-specific GBCAs, Gd-EOB-DTPA, and gadobenate dimeglumine, primarily though OATP transporters. Then, we measured a reduction in the hepatic uptake of these hepatobiliary GBCAs in T2D / mice, which mirrored significant reductions in the mRNA and protein expression of OATP1A1 and OATP1B2. As these GBCAs are U.S. Food and Drug Administration-approved agents and DCE-MRI is a standard clinical protocol, studies to determine OATP1B1/1B3 deficiencies in human individuals with diabetes can be easily envisioned.</description><subject>Animal models</subject><subject>Animals</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Contrast Media - chemistry</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Drug therapy</subject><subject>Gadolinium</subject><subject>Gadolinium DTPA</subject><subject>Gene expression</subject><subject>Hepatocytes</subject><subject>Kidneys</subject><subject>Liver</subject><subject>Liver-Specific Organic Anion Transporter 1 - metabolism</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>mRNA</subject><subject>Organic Anion Transporters - metabolism</subject><subject>Organic anion transporting polypeptide</subject><subject>Organic Cation Transport Proteins - metabolism</subject><subject>Technological Advances</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1Kw0AURgdRbK0ufAEJuNFFdH4zyUKhtFULlYpUcDdMZiY2JZmpmUTo25vQWlTu4i7u4eO7HADOEbzBhPBbnaI4hAyzA9BHCUlCgvn7IehDiHCIeMJ74MT7FYQwaucY9AikMccR7oO78cbKMlfByNm6kr4OJ3YprTI6eH6dBi4L5sPFSzDe-Kyxqs6dDXIbjHOZmtr4U3CUycKbs90egLeHyWL0FM7mj9PRcBYqCkkdYsZi1HYhUSypjjROtYIpTiOaGWlIDDkncUIw1ZpzypVkjBrFNJMxzSJtyADcb3PXTVoarUzXtRDrKi9ltRFO5uLvxeZL8eG-REQoIpC1AVe7gMp9NsbXosy9MkUhrXGNFxiRhEUMU9Kil__QlWsq277XUjGFSULbzAG43lKqct5XJtuXQVB0UkQnRXRSWvbid_s9-WOBfAPmbYV4</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Shuboni-Mulligan, Dorela D</creator><creator>Parys, Maciej</creator><creator>Blanco-Fernandez, Barbara</creator><creator>Mallett, Christiane L</creator><creator>Schnegelberger, Regina</creator><creator>Takada, Marilia</creator><creator>Chakravarty, Shatadru</creator><creator>Hagenbuch, Bruno</creator><creator>Shapiro, Erik M</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4456-3369</orcidid><orcidid>https://orcid.org/0000-0002-0901-5781</orcidid><orcidid>https://orcid.org/0000-0002-2938-8630</orcidid><orcidid>https://orcid.org/0000-0003-0855-318X</orcidid></search><sort><creationdate>20190201</creationdate><title>Dynamic Contrast-Enhanced MRI of OATP Dysfunction in Diabetes</title><author>Shuboni-Mulligan, Dorela D ; Parys, Maciej ; Blanco-Fernandez, Barbara ; Mallett, Christiane L ; Schnegelberger, Regina ; Takada, Marilia ; Chakravarty, Shatadru ; Hagenbuch, Bruno ; Shapiro, Erik M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-25581012368a4d6d2bdc0b2b64feae38077389324dd7747ca554ec5d5a84f6de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Contrast Media - chemistry</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Drug therapy</topic><topic>Gadolinium</topic><topic>Gadolinium DTPA</topic><topic>Gene expression</topic><topic>Hepatocytes</topic><topic>Kidneys</topic><topic>Liver</topic><topic>Liver-Specific Organic Anion Transporter 1 - metabolism</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>mRNA</topic><topic>Organic Anion Transporters - metabolism</topic><topic>Organic anion transporting polypeptide</topic><topic>Organic Cation Transport Proteins - metabolism</topic><topic>Technological Advances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuboni-Mulligan, Dorela D</creatorcontrib><creatorcontrib>Parys, Maciej</creatorcontrib><creatorcontrib>Blanco-Fernandez, Barbara</creatorcontrib><creatorcontrib>Mallett, Christiane L</creatorcontrib><creatorcontrib>Schnegelberger, Regina</creatorcontrib><creatorcontrib>Takada, Marilia</creatorcontrib><creatorcontrib>Chakravarty, Shatadru</creatorcontrib><creatorcontrib>Hagenbuch, Bruno</creatorcontrib><creatorcontrib>Shapiro, Erik M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shuboni-Mulligan, Dorela D</au><au>Parys, Maciej</au><au>Blanco-Fernandez, Barbara</au><au>Mallett, Christiane L</au><au>Schnegelberger, Regina</au><au>Takada, Marilia</au><au>Chakravarty, Shatadru</au><au>Hagenbuch, Bruno</au><au>Shapiro, Erik M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Contrast-Enhanced MRI of OATP Dysfunction in Diabetes</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>68</volume><issue>2</issue><spage>271</spage><epage>280</epage><pages>271-280</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Diabetes is associated with hepatic metabolic dysfunction predisposing patients to drug-induced liver injury. Mouse models of type 2 diabetes (T2D) have dramatically reduced expression of organic anion transporting polypeptide (OATP)1A1, a transporter expressed in hepatocytes and in the kidneys. The effects of diabetes on OATP1B2 expression are less studied and less consistent. OATP1A1 and OATP1B2 both transport endogenous substrates such as bile acids and hormone conjugates as well as numerous drugs including gadoxetate disodium (Gd-EOB-DTPA). As master pharmacokinetic regulators, the altered expression of OATPs in diabetes could have a profound and clinically significant influence on drug therapies. Here, we report a method to noninvasively measure OATP activity in T2D mice by quantifying the transport of hepatobiliary-specific gadolinium-based contrast agents (GBCAs) within the liver and kidneys using dynamic contrast-enhanced MRI (DCE-MRI). By comparing GBCA uptake in control and OATP knockout mice, we confirmed liver clearance of the hepatobiliary-specific GBCAs, Gd-EOB-DTPA, and gadobenate dimeglumine, primarily though OATP transporters. Then, we measured a reduction in the hepatic uptake of these hepatobiliary GBCAs in T2D / mice, which mirrored significant reductions in the mRNA and protein expression of OATP1A1 and OATP1B2. As these GBCAs are U.S. Food and Drug Administration-approved agents and DCE-MRI is a standard clinical protocol, studies to determine OATP1B1/1B3 deficiencies in human individuals with diabetes can be easily envisioned.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>30487262</pmid><doi>10.2337/db18-0525</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4456-3369</orcidid><orcidid>https://orcid.org/0000-0002-0901-5781</orcidid><orcidid>https://orcid.org/0000-0002-2938-8630</orcidid><orcidid>https://orcid.org/0000-0003-0855-318X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2019-02, Vol.68 (2), p.271-280
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6341305
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animal models
Animals
Bile
Bile acids
Contrast Media - chemistry
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - metabolism
Drug therapy
Gadolinium
Gadolinium DTPA
Gene expression
Hepatocytes
Kidneys
Liver
Liver-Specific Organic Anion Transporter 1 - metabolism
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mice
Mice, Knockout
mRNA
Organic Anion Transporters - metabolism
Organic anion transporting polypeptide
Organic Cation Transport Proteins - metabolism
Technological Advances
title Dynamic Contrast-Enhanced MRI of OATP Dysfunction in Diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Contrast-Enhanced%20MRI%20of%20OATP%20Dysfunction%20in%20Diabetes&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Shuboni-Mulligan,%20Dorela%20D&rft.date=2019-02-01&rft.volume=68&rft.issue=2&rft.spage=271&rft.epage=280&rft.pages=271-280&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db18-0525&rft_dat=%3Cproquest_pubme%3E2139565243%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184099441&rft_id=info:pmid/30487262&rfr_iscdi=true