Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm
With the wide application of wireless sensor networks in military and environmental monitoring, security issues have become increasingly prominent. Data exchanged over wireless sensor networks is vulnerable to malicious attacks due to the lack of physical defense equipment. Therefore, corresponding...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2019-01, Vol.19 (1), p.203 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 203 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Tan, Xiaopeng Su, Shaojing Huang, Zhiping Guo, Xiaojun Zuo, Zhen Sun, Xiaoyong Li, Longqing |
description | With the wide application of wireless sensor networks in military and environmental monitoring, security issues have become increasingly prominent. Data exchanged over wireless sensor networks is vulnerable to malicious attacks due to the lack of physical defense equipment. Therefore, corresponding schemes of intrusion detection are urgently needed to defend against such attacks. Considering the serious class imbalance of the intrusion dataset, this paper proposes a method of using the synthetic minority oversampling technique (SMOTE) to balance the dataset and then uses the random forest algorithm to train the classifier for intrusion detection. The simulations are conducted on a benchmark intrusion dataset, and the accuracy of the random forest algorithm has reached 92.39%, which is higher than other comparison algorithms. After oversampling the minority samples, the accuracy of the random forest combined with the SMOTE has increased to 92.57%. This shows that the proposed algorithm provides an effective solution to solve the problem of class imbalance and improves the performance of intrusion detection. |
doi_str_mv | 10.3390/s19010203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6339008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179316391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a0223c1cb0b13158ebc1d0435d84a5bb056111cb414af6a2b8caeda7b17867253</originalsourceid><addsrcrecordid>eNpdkVFPwjAUhRujEUUf_AOmiS_6gPa22xgvJoqgJCiJYHzwoem6C0y3VdtN47-3BCToU09yv56e00vIEbBzITrswkGHAeNMbJE9CHjQijln2xu6Qfade2WMCyHiXdIQLOKRv7BHXp4zizk6R8dYOmPpA1Zfxr45OigrW7vMlPQGK9TVQl0rhyn1Ynw_mvSoKlNazZE-emEK2jcWXUWv8pmxWTUvDsjOVOUOD1dnkzz1e5PuXWs4uh10r4YtHTBRtRTjXGjQCUtAQBhjoiFlgQjTOFBhkrAwAvDjAAI1jRRPYq0wVe0E2nHU5qFoksul73udFJhq9MlVLt9tVij7LY3K5N9Jmc3lzHzKaPF7LPYGpysDaz5q30EWmdOY56pEUzvJod0REIkOePTkH_pqalv6etK34BCKIOSeOltS2hrnLE7XYYDJxaNyvTLPHm-mX5O_OxI_LyOQew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232153452</pqid></control><display><type>article</type><title>Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tan, Xiaopeng ; Su, Shaojing ; Huang, Zhiping ; Guo, Xiaojun ; Zuo, Zhen ; Sun, Xiaoyong ; Li, Longqing</creator><creatorcontrib>Tan, Xiaopeng ; Su, Shaojing ; Huang, Zhiping ; Guo, Xiaojun ; Zuo, Zhen ; Sun, Xiaoyong ; Li, Longqing</creatorcontrib><description>With the wide application of wireless sensor networks in military and environmental monitoring, security issues have become increasingly prominent. Data exchanged over wireless sensor networks is vulnerable to malicious attacks due to the lack of physical defense equipment. Therefore, corresponding schemes of intrusion detection are urgently needed to defend against such attacks. Considering the serious class imbalance of the intrusion dataset, this paper proposes a method of using the synthetic minority oversampling technique (SMOTE) to balance the dataset and then uses the random forest algorithm to train the classifier for intrusion detection. The simulations are conducted on a benchmark intrusion dataset, and the accuracy of the random forest algorithm has reached 92.39%, which is higher than other comparison algorithms. After oversampling the minority samples, the accuracy of the random forest combined with the SMOTE has increased to 92.57%. This shows that the proposed algorithm provides an effective solution to solve the problem of class imbalance and improves the performance of intrusion detection.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19010203</identifier><identifier>PMID: 30626020</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Classification ; Clinical decision making ; Computer simulation ; Data mining ; Decision making ; Defense ; Embedded systems ; Environmental monitoring ; Information processing ; International conferences ; Intrusion detection systems ; Military equipment ; Neural networks ; Principal components analysis ; Random variables ; Remote sensors ; Sensors ; Software ; Wireless communications ; Wireless networks ; Wireless sensor networks</subject><ispartof>Sensors (Basel, Switzerland), 2019-01, Vol.19 (1), p.203</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a0223c1cb0b13158ebc1d0435d84a5bb056111cb414af6a2b8caeda7b17867253</citedby><cites>FETCH-LOGICAL-c403t-a0223c1cb0b13158ebc1d0435d84a5bb056111cb414af6a2b8caeda7b17867253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339008/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339008/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30626020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Xiaopeng</creatorcontrib><creatorcontrib>Su, Shaojing</creatorcontrib><creatorcontrib>Huang, Zhiping</creatorcontrib><creatorcontrib>Guo, Xiaojun</creatorcontrib><creatorcontrib>Zuo, Zhen</creatorcontrib><creatorcontrib>Sun, Xiaoyong</creatorcontrib><creatorcontrib>Li, Longqing</creatorcontrib><title>Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>With the wide application of wireless sensor networks in military and environmental monitoring, security issues have become increasingly prominent. Data exchanged over wireless sensor networks is vulnerable to malicious attacks due to the lack of physical defense equipment. Therefore, corresponding schemes of intrusion detection are urgently needed to defend against such attacks. Considering the serious class imbalance of the intrusion dataset, this paper proposes a method of using the synthetic minority oversampling technique (SMOTE) to balance the dataset and then uses the random forest algorithm to train the classifier for intrusion detection. The simulations are conducted on a benchmark intrusion dataset, and the accuracy of the random forest algorithm has reached 92.39%, which is higher than other comparison algorithms. After oversampling the minority samples, the accuracy of the random forest combined with the SMOTE has increased to 92.57%. This shows that the proposed algorithm provides an effective solution to solve the problem of class imbalance and improves the performance of intrusion detection.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Clinical decision making</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Defense</subject><subject>Embedded systems</subject><subject>Environmental monitoring</subject><subject>Information processing</subject><subject>International conferences</subject><subject>Intrusion detection systems</subject><subject>Military equipment</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Random variables</subject><subject>Remote sensors</subject><subject>Sensors</subject><subject>Software</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFPwjAUhRujEUUf_AOmiS_6gPa22xgvJoqgJCiJYHzwoem6C0y3VdtN47-3BCToU09yv56e00vIEbBzITrswkGHAeNMbJE9CHjQijln2xu6Qfade2WMCyHiXdIQLOKRv7BHXp4zizk6R8dYOmPpA1Zfxr45OigrW7vMlPQGK9TVQl0rhyn1Ynw_mvSoKlNazZE-emEK2jcWXUWv8pmxWTUvDsjOVOUOD1dnkzz1e5PuXWs4uh10r4YtHTBRtRTjXGjQCUtAQBhjoiFlgQjTOFBhkrAwAvDjAAI1jRRPYq0wVe0E2nHU5qFoksul73udFJhq9MlVLt9tVij7LY3K5N9Jmc3lzHzKaPF7LPYGpysDaz5q30EWmdOY56pEUzvJod0REIkOePTkH_pqalv6etK34BCKIOSeOltS2hrnLE7XYYDJxaNyvTLPHm-mX5O_OxI_LyOQew</recordid><startdate>20190108</startdate><enddate>20190108</enddate><creator>Tan, Xiaopeng</creator><creator>Su, Shaojing</creator><creator>Huang, Zhiping</creator><creator>Guo, Xiaojun</creator><creator>Zuo, Zhen</creator><creator>Sun, Xiaoyong</creator><creator>Li, Longqing</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190108</creationdate><title>Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm</title><author>Tan, Xiaopeng ; Su, Shaojing ; Huang, Zhiping ; Guo, Xiaojun ; Zuo, Zhen ; Sun, Xiaoyong ; Li, Longqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a0223c1cb0b13158ebc1d0435d84a5bb056111cb414af6a2b8caeda7b17867253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Clinical decision making</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Defense</topic><topic>Embedded systems</topic><topic>Environmental monitoring</topic><topic>Information processing</topic><topic>International conferences</topic><topic>Intrusion detection systems</topic><topic>Military equipment</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Random variables</topic><topic>Remote sensors</topic><topic>Sensors</topic><topic>Software</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xiaopeng</creatorcontrib><creatorcontrib>Su, Shaojing</creatorcontrib><creatorcontrib>Huang, Zhiping</creatorcontrib><creatorcontrib>Guo, Xiaojun</creatorcontrib><creatorcontrib>Zuo, Zhen</creatorcontrib><creatorcontrib>Sun, Xiaoyong</creatorcontrib><creatorcontrib>Li, Longqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xiaopeng</au><au>Su, Shaojing</au><au>Huang, Zhiping</au><au>Guo, Xiaojun</au><au>Zuo, Zhen</au><au>Sun, Xiaoyong</au><au>Li, Longqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-01-08</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>203</spage><pages>203-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>With the wide application of wireless sensor networks in military and environmental monitoring, security issues have become increasingly prominent. Data exchanged over wireless sensor networks is vulnerable to malicious attacks due to the lack of physical defense equipment. Therefore, corresponding schemes of intrusion detection are urgently needed to defend against such attacks. Considering the serious class imbalance of the intrusion dataset, this paper proposes a method of using the synthetic minority oversampling technique (SMOTE) to balance the dataset and then uses the random forest algorithm to train the classifier for intrusion detection. The simulations are conducted on a benchmark intrusion dataset, and the accuracy of the random forest algorithm has reached 92.39%, which is higher than other comparison algorithms. After oversampling the minority samples, the accuracy of the random forest combined with the SMOTE has increased to 92.57%. This shows that the proposed algorithm provides an effective solution to solve the problem of class imbalance and improves the performance of intrusion detection.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30626020</pmid><doi>10.3390/s19010203</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-01, Vol.19 (1), p.203 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6339008 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial intelligence Classification Clinical decision making Computer simulation Data mining Decision making Defense Embedded systems Environmental monitoring Information processing International conferences Intrusion detection systems Military equipment Neural networks Principal components analysis Random variables Remote sensors Sensors Software Wireless communications Wireless networks Wireless sensor networks |
title | Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20Sensor%20Networks%20Intrusion%20Detection%20Based%20on%20SMOTE%20and%20the%20Random%20Forest%20Algorithm&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Tan,%20Xiaopeng&rft.date=2019-01-08&rft.volume=19&rft.issue=1&rft.spage=203&rft.pages=203-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19010203&rft_dat=%3Cproquest_pubme%3E2179316391%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232153452&rft_id=info:pmid/30626020&rfr_iscdi=true |