A Fluorescence Sensing Determination of 2, 4, 6-Trinitrophenol Based on Cationic Water-Soluble Pillar[6]arene Graphene Nanocomposite

We describe a selective and sensitive fluorescence platform for the detection of trinitrophenol (TNP) based on competitive host⁻guest recognition between pyridine-functionalized pillar[6]arene (PCP6) and a probe (acridine orange, AO) that used PCP6-functionalized reduced graphene (PCP6-rGO) as the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2018-12, Vol.19 (1), p.91
Hauptverfasser: Tan, Xiaoping, Zhang, Tingying, Zeng, Wenjie, He, Shuhua, Liu, Xi, Tian, Hexiang, Shi, Jianwei, Cao, Tuanwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a selective and sensitive fluorescence platform for the detection of trinitrophenol (TNP) based on competitive host⁻guest recognition between pyridine-functionalized pillar[6]arene (PCP6) and a probe (acridine orange, AO) that used PCP6-functionalized reduced graphene (PCP6-rGO) as the receptor. TNP is an electron-deficient and negative molecule, which is captured by PCP6 via electrostatic interactions and π⁻π interactions. Therefore, a selective and sensitive fluorescence probe for TNP detection is developed. It has a low detection limit of 0.0035 μM (S/N = 3) and a wider linear response of 0.01⁻5.0 and 5.0⁻125.0 for TNP. The sensing platform is also used to test TNP in two water and soil samples with satisfying results. This suggests that this approach has potential applications for the determination of TNP.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19010091