Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis
The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO–containing transcription factor complex (AETFC),...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-01, Vol.116 (3), p.890-899 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 899 |
---|---|
container_issue | 3 |
container_start_page | 890 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Liu, Na Song, Junhong Xie, Yangyang Wang, Xiao-Lin Rong, Bowen Man, Na Zhang, Meng-Meng Zhang, Qunling Gao, Fei-Fei Du, Mei-Rong Zhang, Ying Shen, Jian Xu, Chun-Hui Hu, Cheng-Long Wu, Ji-Chuan Liu, Ping Zhang, Yuan-Liang Xie, Yin-Yin Liu, Ping Huang, Jin-Yan Huang, Qiu-Hua Lan, Fei Shen, Shuhong Nimer, Stephen D. Chen, Zhu Chen, Sai-Juan Roeder, Robert G. Wang, Lan Sun, Xiao-Jian 孙晓建 |
description | The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO–containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO–expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO–expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO–mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies. |
doi_str_mv | 10.1073/pnas.1809327116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6338862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26574115</jstor_id><sourcerecordid>26574115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c1b736ca2537b90025fd86ff296b697832d91d26dde082356769283d83860e4f3</originalsourceid><addsrcrecordid>eNpVkEtLw0AURgdRbK2uXSkBN7pIO3cm86IgSK0PKLjR9ZDHjKammTiTCP57U1qrru7invvdw4fQKeAxYEEnTZ2GMUisKBEAfA8NASuIeaLwPhpiTEQsE5IM0FEIS4yxYhIfogHFTFHGxRDBbWmt8aZuI-8qEyJno3nUeNeasg5RWUftpZwSuIoq072bVZkeowObVsGcbOcIvdzNn2cP8eLp_nF2s4jzJKFtnEMmKM9TwqjIVG_CbCG5tUTxjCshKSkUFIQXhcGSrGW4IpIWkkqOTWLpCF1vcpsuW5ki7xV9WunGl6vUf2mXlvr_pi7f9Kv71JxSKTnpAy62Ad59dCa0euk6X_fOmoAATgVhrKcmGyr3LgRv7O4DYL3uWK871r8d9xfnf8V2_E-pPXC2AZahdX63J5yJBIDRb4Ozfw8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2171637255</pqid></control><display><type>article</type><title>Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Na ; Song, Junhong ; Xie, Yangyang ; Wang, Xiao-Lin ; Rong, Bowen ; Man, Na ; Zhang, Meng-Meng ; Zhang, Qunling ; Gao, Fei-Fei ; Du, Mei-Rong ; Zhang, Ying ; Shen, Jian ; Xu, Chun-Hui ; Hu, Cheng-Long ; Wu, Ji-Chuan ; Liu, Ping ; Zhang, Yuan-Liang ; Xie, Yin-Yin ; Liu, Ping ; Huang, Jin-Yan ; Huang, Qiu-Hua ; Lan, Fei ; Shen, Shuhong ; Nimer, Stephen D. ; Chen, Zhu ; Chen, Sai-Juan ; Roeder, Robert G. ; Wang, Lan ; Sun, Xiao-Jian ; 孙晓建</creator><creatorcontrib>Liu, Na ; Song, Junhong ; Xie, Yangyang ; Wang, Xiao-Lin ; Rong, Bowen ; Man, Na ; Zhang, Meng-Meng ; Zhang, Qunling ; Gao, Fei-Fei ; Du, Mei-Rong ; Zhang, Ying ; Shen, Jian ; Xu, Chun-Hui ; Hu, Cheng-Long ; Wu, Ji-Chuan ; Liu, Ping ; Zhang, Yuan-Liang ; Xie, Yin-Yin ; Liu, Ping ; Huang, Jin-Yan ; Huang, Qiu-Hua ; Lan, Fei ; Shen, Shuhong ; Nimer, Stephen D. ; Chen, Zhu ; Chen, Sai-Juan ; Roeder, Robert G. ; Wang, Lan ; Sun, Xiao-Jian ; 孙晓建</creatorcontrib><description>The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO–containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO–expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO–expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO–mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1809327116</identifier><identifier>PMID: 30593567</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acute myeloid leukemia ; AML1 protein ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Binding ; Biological Sciences ; Cell Differentiation ; Cell Line, Tumor ; Cells ; Core Binding Factor Alpha 2 Subunit - metabolism ; Dendritic cells ; Deoxyribonucleic acid ; Diagnostic systems ; Differentiation (biology) ; DNA ; E protein ; Ectopic expression ; Fusion protein ; Gene expression ; Genes ; Heterogeneity ; Humans ; Leukemia ; Leukemia, Myeloid, Acute - etiology ; Leukemia, Myeloid, Acute - metabolism ; Leukemogenesis ; Medical treatment ; Myc protein ; Myeloid leukemia ; Oncogene Proteins, Fusion - metabolism ; PNAS Plus ; Proteins ; Recurrence ; Ribonucleic acid ; RNA ; RUNX1 Translocation Partner 1 Protein - metabolism ; Target recognition ; Transcription Factor 7-Like 2 Protein - metabolism ; Transcription factors ; Translocation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (3), p.890-899</ispartof><rights>Volumes 1–89 and 106–116, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 15, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c1b736ca2537b90025fd86ff296b697832d91d26dde082356769283d83860e4f3</citedby><cites>FETCH-LOGICAL-c443t-c1b736ca2537b90025fd86ff296b697832d91d26dde082356769283d83860e4f3</cites><orcidid>0000-0001-8826-4614 ; 0000-0002-8053-0209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26574115$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26574115$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30593567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Song, Junhong</creatorcontrib><creatorcontrib>Xie, Yangyang</creatorcontrib><creatorcontrib>Wang, Xiao-Lin</creatorcontrib><creatorcontrib>Rong, Bowen</creatorcontrib><creatorcontrib>Man, Na</creatorcontrib><creatorcontrib>Zhang, Meng-Meng</creatorcontrib><creatorcontrib>Zhang, Qunling</creatorcontrib><creatorcontrib>Gao, Fei-Fei</creatorcontrib><creatorcontrib>Du, Mei-Rong</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Xu, Chun-Hui</creatorcontrib><creatorcontrib>Hu, Cheng-Long</creatorcontrib><creatorcontrib>Wu, Ji-Chuan</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Zhang, Yuan-Liang</creatorcontrib><creatorcontrib>Xie, Yin-Yin</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Huang, Jin-Yan</creatorcontrib><creatorcontrib>Huang, Qiu-Hua</creatorcontrib><creatorcontrib>Lan, Fei</creatorcontrib><creatorcontrib>Shen, Shuhong</creatorcontrib><creatorcontrib>Nimer, Stephen D.</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chen, Sai-Juan</creatorcontrib><creatorcontrib>Roeder, Robert G.</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Sun, Xiao-Jian</creatorcontrib><creatorcontrib>孙晓建</creatorcontrib><title>Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO–containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO–expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO–expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO–mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.</description><subject>Acute myeloid leukemia</subject><subject>AML1 protein</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cells</subject><subject>Core Binding Factor Alpha 2 Subunit - metabolism</subject><subject>Dendritic cells</subject><subject>Deoxyribonucleic acid</subject><subject>Diagnostic systems</subject><subject>Differentiation (biology)</subject><subject>DNA</subject><subject>E protein</subject><subject>Ectopic expression</subject><subject>Fusion protein</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - etiology</subject><subject>Leukemia, Myeloid, Acute - metabolism</subject><subject>Leukemogenesis</subject><subject>Medical treatment</subject><subject>Myc protein</subject><subject>Myeloid leukemia</subject><subject>Oncogene Proteins, Fusion - metabolism</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Recurrence</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RUNX1 Translocation Partner 1 Protein - metabolism</subject><subject>Target recognition</subject><subject>Transcription Factor 7-Like 2 Protein - metabolism</subject><subject>Transcription factors</subject><subject>Translocation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtLw0AURgdRbK2uXSkBN7pIO3cm86IgSK0PKLjR9ZDHjKammTiTCP57U1qrru7invvdw4fQKeAxYEEnTZ2GMUisKBEAfA8NASuIeaLwPhpiTEQsE5IM0FEIS4yxYhIfogHFTFHGxRDBbWmt8aZuI-8qEyJno3nUeNeasg5RWUftpZwSuIoq072bVZkeowObVsGcbOcIvdzNn2cP8eLp_nF2s4jzJKFtnEMmKM9TwqjIVG_CbCG5tUTxjCshKSkUFIQXhcGSrGW4IpIWkkqOTWLpCF1vcpsuW5ki7xV9WunGl6vUf2mXlvr_pi7f9Kv71JxSKTnpAy62Ad59dCa0euk6X_fOmoAATgVhrKcmGyr3LgRv7O4DYL3uWK871r8d9xfnf8V2_E-pPXC2AZahdX63J5yJBIDRb4Ozfw8</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Liu, Na</creator><creator>Song, Junhong</creator><creator>Xie, Yangyang</creator><creator>Wang, Xiao-Lin</creator><creator>Rong, Bowen</creator><creator>Man, Na</creator><creator>Zhang, Meng-Meng</creator><creator>Zhang, Qunling</creator><creator>Gao, Fei-Fei</creator><creator>Du, Mei-Rong</creator><creator>Zhang, Ying</creator><creator>Shen, Jian</creator><creator>Xu, Chun-Hui</creator><creator>Hu, Cheng-Long</creator><creator>Wu, Ji-Chuan</creator><creator>Liu, Ping</creator><creator>Zhang, Yuan-Liang</creator><creator>Xie, Yin-Yin</creator><creator>Liu, Ping</creator><creator>Huang, Jin-Yan</creator><creator>Huang, Qiu-Hua</creator><creator>Lan, Fei</creator><creator>Shen, Shuhong</creator><creator>Nimer, Stephen D.</creator><creator>Chen, Zhu</creator><creator>Chen, Sai-Juan</creator><creator>Roeder, Robert G.</creator><creator>Wang, Lan</creator><creator>Sun, Xiao-Jian</creator><creator>孙晓建</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8826-4614</orcidid><orcidid>https://orcid.org/0000-0002-8053-0209</orcidid></search><sort><creationdate>20190115</creationdate><title>Different roles of E proteins in t(8;21) leukemia</title><author>Liu, Na ; Song, Junhong ; Xie, Yangyang ; Wang, Xiao-Lin ; Rong, Bowen ; Man, Na ; Zhang, Meng-Meng ; Zhang, Qunling ; Gao, Fei-Fei ; Du, Mei-Rong ; Zhang, Ying ; Shen, Jian ; Xu, Chun-Hui ; Hu, Cheng-Long ; Wu, Ji-Chuan ; Liu, Ping ; Zhang, Yuan-Liang ; Xie, Yin-Yin ; Liu, Ping ; Huang, Jin-Yan ; Huang, Qiu-Hua ; Lan, Fei ; Shen, Shuhong ; Nimer, Stephen D. ; Chen, Zhu ; Chen, Sai-Juan ; Roeder, Robert G. ; Wang, Lan ; Sun, Xiao-Jian ; 孙晓建</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c1b736ca2537b90025fd86ff296b697832d91d26dde082356769283d83860e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acute myeloid leukemia</topic><topic>AML1 protein</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cells</topic><topic>Core Binding Factor Alpha 2 Subunit - metabolism</topic><topic>Dendritic cells</topic><topic>Deoxyribonucleic acid</topic><topic>Diagnostic systems</topic><topic>Differentiation (biology)</topic><topic>DNA</topic><topic>E protein</topic><topic>Ectopic expression</topic><topic>Fusion protein</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - etiology</topic><topic>Leukemia, Myeloid, Acute - metabolism</topic><topic>Leukemogenesis</topic><topic>Medical treatment</topic><topic>Myc protein</topic><topic>Myeloid leukemia</topic><topic>Oncogene Proteins, Fusion - metabolism</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Recurrence</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RUNX1 Translocation Partner 1 Protein - metabolism</topic><topic>Target recognition</topic><topic>Transcription Factor 7-Like 2 Protein - metabolism</topic><topic>Transcription factors</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Song, Junhong</creatorcontrib><creatorcontrib>Xie, Yangyang</creatorcontrib><creatorcontrib>Wang, Xiao-Lin</creatorcontrib><creatorcontrib>Rong, Bowen</creatorcontrib><creatorcontrib>Man, Na</creatorcontrib><creatorcontrib>Zhang, Meng-Meng</creatorcontrib><creatorcontrib>Zhang, Qunling</creatorcontrib><creatorcontrib>Gao, Fei-Fei</creatorcontrib><creatorcontrib>Du, Mei-Rong</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Xu, Chun-Hui</creatorcontrib><creatorcontrib>Hu, Cheng-Long</creatorcontrib><creatorcontrib>Wu, Ji-Chuan</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Zhang, Yuan-Liang</creatorcontrib><creatorcontrib>Xie, Yin-Yin</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Huang, Jin-Yan</creatorcontrib><creatorcontrib>Huang, Qiu-Hua</creatorcontrib><creatorcontrib>Lan, Fei</creatorcontrib><creatorcontrib>Shen, Shuhong</creatorcontrib><creatorcontrib>Nimer, Stephen D.</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chen, Sai-Juan</creatorcontrib><creatorcontrib>Roeder, Robert G.</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Sun, Xiao-Jian</creatorcontrib><creatorcontrib>孙晓建</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Na</au><au>Song, Junhong</au><au>Xie, Yangyang</au><au>Wang, Xiao-Lin</au><au>Rong, Bowen</au><au>Man, Na</au><au>Zhang, Meng-Meng</au><au>Zhang, Qunling</au><au>Gao, Fei-Fei</au><au>Du, Mei-Rong</au><au>Zhang, Ying</au><au>Shen, Jian</au><au>Xu, Chun-Hui</au><au>Hu, Cheng-Long</au><au>Wu, Ji-Chuan</au><au>Liu, Ping</au><au>Zhang, Yuan-Liang</au><au>Xie, Yin-Yin</au><au>Liu, Ping</au><au>Huang, Jin-Yan</au><au>Huang, Qiu-Hua</au><au>Lan, Fei</au><au>Shen, Shuhong</au><au>Nimer, Stephen D.</au><au>Chen, Zhu</au><au>Chen, Sai-Juan</au><au>Roeder, Robert G.</au><au>Wang, Lan</au><au>Sun, Xiao-Jian</au><au>孙晓建</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-01-15</date><risdate>2019</risdate><volume>116</volume><issue>3</issue><spage>890</spage><epage>899</epage><pages>890-899</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO–containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO–expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO–expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO–mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30593567</pmid><doi>10.1073/pnas.1809327116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8826-4614</orcidid><orcidid>https://orcid.org/0000-0002-8053-0209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-01, Vol.116 (3), p.890-899 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6338862 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acute myeloid leukemia AML1 protein Basic Helix-Loop-Helix Transcription Factors - metabolism Binding Biological Sciences Cell Differentiation Cell Line, Tumor Cells Core Binding Factor Alpha 2 Subunit - metabolism Dendritic cells Deoxyribonucleic acid Diagnostic systems Differentiation (biology) DNA E protein Ectopic expression Fusion protein Gene expression Genes Heterogeneity Humans Leukemia Leukemia, Myeloid, Acute - etiology Leukemia, Myeloid, Acute - metabolism Leukemogenesis Medical treatment Myc protein Myeloid leukemia Oncogene Proteins, Fusion - metabolism PNAS Plus Proteins Recurrence Ribonucleic acid RNA RUNX1 Translocation Partner 1 Protein - metabolism Target recognition Transcription Factor 7-Like 2 Protein - metabolism Transcription factors Translocation |
title | Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20roles%20of%20E%20proteins%20in%20t(8;21)%20leukemia:%20E2-2%20compromises%20the%20function%20of%20AETFC%20and%20negatively%20regulates%20leukemogenesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Na&rft.date=2019-01-15&rft.volume=116&rft.issue=3&rft.spage=890&rft.epage=899&rft.pages=890-899&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1809327116&rft_dat=%3Cjstor_pubme%3E26574115%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2171637255&rft_id=info:pmid/30593567&rft_jstor_id=26574115&rfr_iscdi=true |