Effects of Mo addition on crack tip opening displacement (CTOD) in heat affected zones (HAZs) of high-strength low-alloy (HSLA) steels
Effects of Mo addition on microstructures and crack tip opening displacement (CTOD) in heat affected zones (HAZs) of three high-strength low-alloy (HSLA) steels were investigated in this study, and the correlation between them was explained by fracture mechanisms related with martensite-austenite co...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-01, Vol.9 (1), p.229-229, Article 229 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 1 |
container_start_page | 229 |
container_title | Scientific reports |
container_volume | 9 |
creator | Lee, Seok Gyu Kim, Bohee Kim, Woo Gyeom Um, Kyung-Keun Lee, Sunghak |
description | Effects of Mo addition on microstructures and crack tip opening displacement (CTOD) in heat affected zones (HAZs) of three high-strength low-alloy (HSLA) steels were investigated in this study, and the correlation between them was explained by fracture mechanisms related with martensite-austenite constituent (MA) characteristics. The coarse-grained HAZ (CGHAZ) consisted of acicular ferrite (AF), granular bainite (GB), and bainitic ferrite (BF), whereas the inter-critically heated HAZ (ICHAZ) consisted of quasi-polygonal ferrite (QPF), GB, and MA. Since Mo promoted the formation of GB, BF, and MA and prevented the formation of AF and QPF, the CTOD decreased in both HAZs with increasing Mo content. According to the interrupted three-point bending test results of the ICHAZ where many MAs were distributed in the QPF or GB matrix, many voids were observed mainly at MA/QPF interfaces, which implied that the void initiation at the interfaces was a major fracture mechanism. The atomic probe data of MAs indicated the segregation of C, Mn, Mo, and P at MA/QPF interfaces, which could result in the easy MA/matrix interfacial debonding to initiate voids. Thus, characteristics of MA/QPF interfaces might affect more importantly the CTOD than the MA volume fraction or size. |
doi_str_mv | 10.1038/s41598-018-36782-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6338775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179366833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-64206d88d8adb7b3649bc9a62970d0990cb87a17dc445b3f61e9c6f9ae62f5153</originalsourceid><addsrcrecordid>eNp9kctuEzEUhkcIRKvQF2CBLLFJFgO-jS8bpChtKVJQF5QNG8vj8cy4TOxgO6D2AXhunKaUwgLLki2dz5_P0V9VLxF8gyARbxNFjRQ1RKImjAtcsyfVMYa0qTHB-Omj-1F1ktI1LKvBkiL5vDoikDUSc35c_Tzre2tyAqEHHwPQXeeyCx6UbaI2X0F2WxC21js_gM6l7aSN3VifwXx1dXm6AM6D0eoM9J3HduA2eJvA_GL5JS321tENY51ytH7II5jCj1pPU7gpxKf1cgFStnZKL6pnvZ6SPbk_Z9Xn87Or1UW9vnz_YbVc14ZymmtGMWSdEJ3QXctbwqhsjdQMSw47KCU0reAa8c5Q2rSkZ8hKw3qpLcN9gxoyq94dvNtdu7GdKYNEPaltdBsdb1TQTv1d8W5UQ_iuGCGC871gfi-I4dvOpqw2Lhk7TdrbsEsKIy4JY4KQgr7-B70Ou-jLeIViooGcElQofKBMDClF2z80g6DaJ60OSauStLpLuvQyq149HuPhye9cC0AOQColP9j45-__aH8BelmzVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168507431</pqid></control><display><type>article</type><title>Effects of Mo addition on crack tip opening displacement (CTOD) in heat affected zones (HAZs) of high-strength low-alloy (HSLA) steels</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Seok Gyu ; Kim, Bohee ; Kim, Woo Gyeom ; Um, Kyung-Keun ; Lee, Sunghak</creator><creatorcontrib>Lee, Seok Gyu ; Kim, Bohee ; Kim, Woo Gyeom ; Um, Kyung-Keun ; Lee, Sunghak</creatorcontrib><description>Effects of Mo addition on microstructures and crack tip opening displacement (CTOD) in heat affected zones (HAZs) of three high-strength low-alloy (HSLA) steels were investigated in this study, and the correlation between them was explained by fracture mechanisms related with martensite-austenite constituent (MA) characteristics. The coarse-grained HAZ (CGHAZ) consisted of acicular ferrite (AF), granular bainite (GB), and bainitic ferrite (BF), whereas the inter-critically heated HAZ (ICHAZ) consisted of quasi-polygonal ferrite (QPF), GB, and MA. Since Mo promoted the formation of GB, BF, and MA and prevented the formation of AF and QPF, the CTOD decreased in both HAZs with increasing Mo content. According to the interrupted three-point bending test results of the ICHAZ where many MAs were distributed in the QPF or GB matrix, many voids were observed mainly at MA/QPF interfaces, which implied that the void initiation at the interfaces was a major fracture mechanism. The atomic probe data of MAs indicated the segregation of C, Mn, Mo, and P at MA/QPF interfaces, which could result in the easy MA/matrix interfacial debonding to initiate voids. Thus, characteristics of MA/QPF interfaces might affect more importantly the CTOD than the MA volume fraction or size.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36782-6</identifier><identifier>PMID: 30659277</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/301/1023/303 ; Heat treating ; Humanities and Social Sciences ; Interfaces ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-01, Vol.9 (1), p.229-229, Article 229</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-64206d88d8adb7b3649bc9a62970d0990cb87a17dc445b3f61e9c6f9ae62f5153</citedby><cites>FETCH-LOGICAL-c474t-64206d88d8adb7b3649bc9a62970d0990cb87a17dc445b3f61e9c6f9ae62f5153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338775/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338775/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30659277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Seok Gyu</creatorcontrib><creatorcontrib>Kim, Bohee</creatorcontrib><creatorcontrib>Kim, Woo Gyeom</creatorcontrib><creatorcontrib>Um, Kyung-Keun</creatorcontrib><creatorcontrib>Lee, Sunghak</creatorcontrib><title>Effects of Mo addition on crack tip opening displacement (CTOD) in heat affected zones (HAZs) of high-strength low-alloy (HSLA) steels</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Effects of Mo addition on microstructures and crack tip opening displacement (CTOD) in heat affected zones (HAZs) of three high-strength low-alloy (HSLA) steels were investigated in this study, and the correlation between them was explained by fracture mechanisms related with martensite-austenite constituent (MA) characteristics. The coarse-grained HAZ (CGHAZ) consisted of acicular ferrite (AF), granular bainite (GB), and bainitic ferrite (BF), whereas the inter-critically heated HAZ (ICHAZ) consisted of quasi-polygonal ferrite (QPF), GB, and MA. Since Mo promoted the formation of GB, BF, and MA and prevented the formation of AF and QPF, the CTOD decreased in both HAZs with increasing Mo content. According to the interrupted three-point bending test results of the ICHAZ where many MAs were distributed in the QPF or GB matrix, many voids were observed mainly at MA/QPF interfaces, which implied that the void initiation at the interfaces was a major fracture mechanism. The atomic probe data of MAs indicated the segregation of C, Mn, Mo, and P at MA/QPF interfaces, which could result in the easy MA/matrix interfacial debonding to initiate voids. Thus, characteristics of MA/QPF interfaces might affect more importantly the CTOD than the MA volume fraction or size.</description><subject>639/301/1023/1026</subject><subject>639/301/1023/303</subject><subject>Heat treating</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctuEzEUhkcIRKvQF2CBLLFJFgO-jS8bpChtKVJQF5QNG8vj8cy4TOxgO6D2AXhunKaUwgLLki2dz5_P0V9VLxF8gyARbxNFjRQ1RKImjAtcsyfVMYa0qTHB-Omj-1F1ktI1LKvBkiL5vDoikDUSc35c_Tzre2tyAqEHHwPQXeeyCx6UbaI2X0F2WxC21js_gM6l7aSN3VifwXx1dXm6AM6D0eoM9J3HduA2eJvA_GL5JS321tENY51ytH7II5jCj1pPU7gpxKf1cgFStnZKL6pnvZ6SPbk_Z9Xn87Or1UW9vnz_YbVc14ZymmtGMWSdEJ3QXctbwqhsjdQMSw47KCU0reAa8c5Q2rSkZ8hKw3qpLcN9gxoyq94dvNtdu7GdKYNEPaltdBsdb1TQTv1d8W5UQ_iuGCGC871gfi-I4dvOpqw2Lhk7TdrbsEsKIy4JY4KQgr7-B70Ou-jLeIViooGcElQofKBMDClF2z80g6DaJ60OSauStLpLuvQyq149HuPhye9cC0AOQColP9j45-__aH8BelmzVQ</recordid><startdate>20190118</startdate><enddate>20190118</enddate><creator>Lee, Seok Gyu</creator><creator>Kim, Bohee</creator><creator>Kim, Woo Gyeom</creator><creator>Um, Kyung-Keun</creator><creator>Lee, Sunghak</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190118</creationdate><title>Effects of Mo addition on crack tip opening displacement (CTOD) in heat affected zones (HAZs) of high-strength low-alloy (HSLA) steels</title><author>Lee, Seok Gyu ; Kim, Bohee ; Kim, Woo Gyeom ; Um, Kyung-Keun ; Lee, Sunghak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-64206d88d8adb7b3649bc9a62970d0990cb87a17dc445b3f61e9c6f9ae62f5153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1023/1026</topic><topic>639/301/1023/303</topic><topic>Heat treating</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seok Gyu</creatorcontrib><creatorcontrib>Kim, Bohee</creatorcontrib><creatorcontrib>Kim, Woo Gyeom</creatorcontrib><creatorcontrib>Um, Kyung-Keun</creatorcontrib><creatorcontrib>Lee, Sunghak</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seok Gyu</au><au>Kim, Bohee</au><au>Kim, Woo Gyeom</au><au>Um, Kyung-Keun</au><au>Lee, Sunghak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Mo addition on crack tip opening displacement (CTOD) in heat affected zones (HAZs) of high-strength low-alloy (HSLA) steels</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-01-18</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>229</spage><epage>229</epage><pages>229-229</pages><artnum>229</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Effects of Mo addition on microstructures and crack tip opening displacement (CTOD) in heat affected zones (HAZs) of three high-strength low-alloy (HSLA) steels were investigated in this study, and the correlation between them was explained by fracture mechanisms related with martensite-austenite constituent (MA) characteristics. The coarse-grained HAZ (CGHAZ) consisted of acicular ferrite (AF), granular bainite (GB), and bainitic ferrite (BF), whereas the inter-critically heated HAZ (ICHAZ) consisted of quasi-polygonal ferrite (QPF), GB, and MA. Since Mo promoted the formation of GB, BF, and MA and prevented the formation of AF and QPF, the CTOD decreased in both HAZs with increasing Mo content. According to the interrupted three-point bending test results of the ICHAZ where many MAs were distributed in the QPF or GB matrix, many voids were observed mainly at MA/QPF interfaces, which implied that the void initiation at the interfaces was a major fracture mechanism. The atomic probe data of MAs indicated the segregation of C, Mn, Mo, and P at MA/QPF interfaces, which could result in the easy MA/matrix interfacial debonding to initiate voids. Thus, characteristics of MA/QPF interfaces might affect more importantly the CTOD than the MA volume fraction or size.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30659277</pmid><doi>10.1038/s41598-018-36782-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-01, Vol.9 (1), p.229-229, Article 229 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6338775 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/301/1023/1026 639/301/1023/303 Heat treating Humanities and Social Sciences Interfaces multidisciplinary Science Science (multidisciplinary) |
title | Effects of Mo addition on crack tip opening displacement (CTOD) in heat affected zones (HAZs) of high-strength low-alloy (HSLA) steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Mo%20addition%20on%20crack%20tip%20opening%20displacement%20(CTOD)%20in%20heat%20affected%20zones%20(HAZs)%20of%20high-strength%20low-alloy%20(HSLA)%20steels&rft.jtitle=Scientific%20reports&rft.au=Lee,%20Seok%20Gyu&rft.date=2019-01-18&rft.volume=9&rft.issue=1&rft.spage=229&rft.epage=229&rft.pages=229-229&rft.artnum=229&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36782-6&rft_dat=%3Cproquest_pubme%3E2179366833%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168507431&rft_id=info:pmid/30659277&rfr_iscdi=true |