Novel non-phosphorylative pathway of pentose metabolism from bacteria
Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodoroff pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolal...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-01, Vol.9 (1), p.155-155, Article 155 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | Scientific reports |
container_volume | 9 |
creator | Watanabe, Seiya Fukumori, Fumiyasu Nishiwaki, Hisashi Sakurai, Yasuhiro Tajima, Kunihiko Watanabe, Yasuo |
description | Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodoroff pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identified on the genome of
Herbaspirillum huttiense
IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, differed from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea. |
doi_str_mv | 10.1038/s41598-018-36774-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6336799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168161405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-97fb90dc632585ebc1d4fd85e72b7f764c4e8da607508cb914b2d82b42d18bf63</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWtQXcCEDbtyMJplcN4IUb1B0o-uQZDJ2ysxkTKaVvr2p1VpdGAg5cL785_IDcILgBYKFuIwEUSlyiEReMM5JznbACENCc1xgvLsVH4DjGGcwHYolQXIfHBSQUUqFHIGbR79wTdb5Lu-nPqYblo0e6oXLej1M3_Uy81XWu27w0WWtG7TxTR3brAq-zYy2gwu1PgJ7lW6iO_56D8HL7c3z-D6fPN09jK8nuaWcD7nklZGwtKzAVFBnLCpJVaaIY8MrzoglTpSaQU6hsEYiYnApsCG4RMJUrDgEV2vdfm5aV9rUVtCN6kPd6rBUXtfqd6arp-rVLxQr0pKkTALnXwLBv81dHFRbR-uaRnfOz6PCiKcVISFWtc7-oDM_D10aL1FMIIYIpInCa8oGH2Nw1aYZBNXKKLU2SiWj1KdRaiV9uj3G5su3LQko1kBMqe7VhZ_a_8h-AHQ9n2o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168161405</pqid></control><display><type>article</type><title>Novel non-phosphorylative pathway of pentose metabolism from bacteria</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Watanabe, Seiya ; Fukumori, Fumiyasu ; Nishiwaki, Hisashi ; Sakurai, Yasuhiro ; Tajima, Kunihiko ; Watanabe, Yasuo</creator><creatorcontrib>Watanabe, Seiya ; Fukumori, Fumiyasu ; Nishiwaki, Hisashi ; Sakurai, Yasuhiro ; Tajima, Kunihiko ; Watanabe, Yasuo</creatorcontrib><description>Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodoroff pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identified on the genome of
Herbaspirillum huttiense
IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, differed from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36774-6</identifier><identifier>PMID: 30655589</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 631/326/41 ; 631/45/173 ; 82/80 ; 82/83 ; Arabinonate dehydratase ; Arabinose ; Bacteria ; Bacterial Proteins - metabolism ; Computational Biology - methods ; D-Xylulose 5-phosphate ; Fungi ; Gene clusters ; Genetic analysis ; Genomes ; Glycolaldehyde ; Herbaspirillum - genetics ; Herbaspirillum - metabolism ; Humanities and Social Sciences ; Hydrolase ; Ketoglutaric acid ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; multidisciplinary ; Multigene Family ; Pentoses - metabolism ; Phosphorylation ; Pyruvic acid ; Science ; Science (multidisciplinary) ; Sugar ; Xylose ; Xylulose</subject><ispartof>Scientific reports, 2019-01, Vol.9 (1), p.155-155, Article 155</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-97fb90dc632585ebc1d4fd85e72b7f764c4e8da607508cb914b2d82b42d18bf63</citedby><cites>FETCH-LOGICAL-c577t-97fb90dc632585ebc1d4fd85e72b7f764c4e8da607508cb914b2d82b42d18bf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336799/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336799/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30655589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Seiya</creatorcontrib><creatorcontrib>Fukumori, Fumiyasu</creatorcontrib><creatorcontrib>Nishiwaki, Hisashi</creatorcontrib><creatorcontrib>Sakurai, Yasuhiro</creatorcontrib><creatorcontrib>Tajima, Kunihiko</creatorcontrib><creatorcontrib>Watanabe, Yasuo</creatorcontrib><title>Novel non-phosphorylative pathway of pentose metabolism from bacteria</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodoroff pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identified on the genome of
Herbaspirillum huttiense
IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, differed from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea.</description><subject>38/39</subject><subject>631/326/41</subject><subject>631/45/173</subject><subject>82/80</subject><subject>82/83</subject><subject>Arabinonate dehydratase</subject><subject>Arabinose</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Computational Biology - methods</subject><subject>D-Xylulose 5-phosphate</subject><subject>Fungi</subject><subject>Gene clusters</subject><subject>Genetic analysis</subject><subject>Genomes</subject><subject>Glycolaldehyde</subject><subject>Herbaspirillum - genetics</subject><subject>Herbaspirillum - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolase</subject><subject>Ketoglutaric acid</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>multidisciplinary</subject><subject>Multigene Family</subject><subject>Pentoses - metabolism</subject><subject>Phosphorylation</subject><subject>Pyruvic acid</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sugar</subject><subject>Xylose</subject><subject>Xylulose</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctKAzEUhoMoWtQXcCEDbtyMJplcN4IUb1B0o-uQZDJ2ysxkTKaVvr2p1VpdGAg5cL785_IDcILgBYKFuIwEUSlyiEReMM5JznbACENCc1xgvLsVH4DjGGcwHYolQXIfHBSQUUqFHIGbR79wTdb5Lu-nPqYblo0e6oXLej1M3_Uy81XWu27w0WWtG7TxTR3brAq-zYy2gwu1PgJ7lW6iO_56D8HL7c3z-D6fPN09jK8nuaWcD7nklZGwtKzAVFBnLCpJVaaIY8MrzoglTpSaQU6hsEYiYnApsCG4RMJUrDgEV2vdfm5aV9rUVtCN6kPd6rBUXtfqd6arp-rVLxQr0pKkTALnXwLBv81dHFRbR-uaRnfOz6PCiKcVISFWtc7-oDM_D10aL1FMIIYIpInCa8oGH2Nw1aYZBNXKKLU2SiWj1KdRaiV9uj3G5su3LQko1kBMqe7VhZ_a_8h-AHQ9n2o</recordid><startdate>20190117</startdate><enddate>20190117</enddate><creator>Watanabe, Seiya</creator><creator>Fukumori, Fumiyasu</creator><creator>Nishiwaki, Hisashi</creator><creator>Sakurai, Yasuhiro</creator><creator>Tajima, Kunihiko</creator><creator>Watanabe, Yasuo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190117</creationdate><title>Novel non-phosphorylative pathway of pentose metabolism from bacteria</title><author>Watanabe, Seiya ; Fukumori, Fumiyasu ; Nishiwaki, Hisashi ; Sakurai, Yasuhiro ; Tajima, Kunihiko ; Watanabe, Yasuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-97fb90dc632585ebc1d4fd85e72b7f764c4e8da607508cb914b2d82b42d18bf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>38/39</topic><topic>631/326/41</topic><topic>631/45/173</topic><topic>82/80</topic><topic>82/83</topic><topic>Arabinonate dehydratase</topic><topic>Arabinose</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Computational Biology - methods</topic><topic>D-Xylulose 5-phosphate</topic><topic>Fungi</topic><topic>Gene clusters</topic><topic>Genetic analysis</topic><topic>Genomes</topic><topic>Glycolaldehyde</topic><topic>Herbaspirillum - genetics</topic><topic>Herbaspirillum - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolase</topic><topic>Ketoglutaric acid</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>multidisciplinary</topic><topic>Multigene Family</topic><topic>Pentoses - metabolism</topic><topic>Phosphorylation</topic><topic>Pyruvic acid</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sugar</topic><topic>Xylose</topic><topic>Xylulose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Seiya</creatorcontrib><creatorcontrib>Fukumori, Fumiyasu</creatorcontrib><creatorcontrib>Nishiwaki, Hisashi</creatorcontrib><creatorcontrib>Sakurai, Yasuhiro</creatorcontrib><creatorcontrib>Tajima, Kunihiko</creatorcontrib><creatorcontrib>Watanabe, Yasuo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Seiya</au><au>Fukumori, Fumiyasu</au><au>Nishiwaki, Hisashi</au><au>Sakurai, Yasuhiro</au><au>Tajima, Kunihiko</au><au>Watanabe, Yasuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel non-phosphorylative pathway of pentose metabolism from bacteria</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-01-17</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>155</spage><epage>155</epage><pages>155-155</pages><artnum>155</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodoroff pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identified on the genome of
Herbaspirillum huttiense
IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, differed from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30655589</pmid><doi>10.1038/s41598-018-36774-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-01, Vol.9 (1), p.155-155, Article 155 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6336799 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 38/39 631/326/41 631/45/173 82/80 82/83 Arabinonate dehydratase Arabinose Bacteria Bacterial Proteins - metabolism Computational Biology - methods D-Xylulose 5-phosphate Fungi Gene clusters Genetic analysis Genomes Glycolaldehyde Herbaspirillum - genetics Herbaspirillum - metabolism Humanities and Social Sciences Hydrolase Ketoglutaric acid Metabolic Networks and Pathways Metabolic pathways Metabolism multidisciplinary Multigene Family Pentoses - metabolism Phosphorylation Pyruvic acid Science Science (multidisciplinary) Sugar Xylose Xylulose |
title | Novel non-phosphorylative pathway of pentose metabolism from bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20non-phosphorylative%20pathway%20of%20pentose%20metabolism%20from%20bacteria&rft.jtitle=Scientific%20reports&rft.au=Watanabe,%20Seiya&rft.date=2019-01-17&rft.volume=9&rft.issue=1&rft.spage=155&rft.epage=155&rft.pages=155-155&rft.artnum=155&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36774-6&rft_dat=%3Cproquest_pubme%3E2168161405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168161405&rft_id=info:pmid/30655589&rfr_iscdi=true |