Genome sequence of Jatropha curcas L., a non‐edible biodiesel plant, provides a resource to improve seed‐related traits
Summary Jatropha curcas (physic nut), a non‐edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using bo...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2019-02, Vol.17 (2), p.517-530 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | 2 |
container_start_page | 517 |
container_title | Plant biotechnology journal |
container_volume | 17 |
creator | Ha, Jungmin Shim, Sangrea Lee, Taeyoung Kang, Yang J. Hwang, Won J. Jeong, Haneul Laosatit, Kularb Lee, Jayern Kim, Sue K. Satyawan, Dani Lestari, Puji Yoon, Min Y. Kim, Moon Y. Chitikineni, Annapurna Tanya, Patcharin Somta, Prakit Srinives, Peerasak Varshney, Rajeev K. Lee, Suk‐Ha |
description | Summary
Jatropha curcas (physic nut), a non‐edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up‐regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed. |
doi_str_mv | 10.1111/pbi.12995 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6335072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733296074</galeid><sourcerecordid>A733296074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5155-572587cc6728a860e2588d57c48c593090b4f984c6ab85e6df16872738ccdec93</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxyMEoh9w4AWQJS5U6m4dx1-5VCoVlKKV4ABny7EnravEDna2qOLCI_CMPAmzbFkBEvbBH_Ob_3jGU1XParqscZxMXVjWrG3Fg2q_5lItlBTs4W7P-V51UMoNpayWQj6u9hpKRSup3q--XkBMI5ACn9cQHZDUk3d2zmm6tsSts7OFrJbHxJKY4o9v38GHbgDSheQDFBjINNg4H5Mpp9vgoSCYoSR0BDInEsaNYSMPHr0zDHYGT-Zsw1yeVI96OxR4er8eVp_evP54_naxen9xeX62WjhRC7EQigmtnJOKaaslBTxqL5Tj2om2oS3teN9q7qTttADp-1pqxVSjnfPg2uawOt3qTutuBO8gYvzBTDmMNt-ZZIP52xLDtblKt0Y2jaCKocDLe4GcsExlNmMoDgZMHdK6GCYYZ5yLmiP64h_0BosRMT2DxVeNapmWSC231JUdwITYJ4zrcHoYg0sR-oD3Z6ppGH6T2sgebR1cTqVk6Hevr6nZ9IDBHjC_egDZ53-muyN_fzoCJ1vgC0a5-7-S-fDqciv5E9abvXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167379286</pqid></control><display><type>article</type><title>Genome sequence of Jatropha curcas L., a non‐edible biodiesel plant, provides a resource to improve seed‐related traits</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><creator>Ha, Jungmin ; Shim, Sangrea ; Lee, Taeyoung ; Kang, Yang J. ; Hwang, Won J. ; Jeong, Haneul ; Laosatit, Kularb ; Lee, Jayern ; Kim, Sue K. ; Satyawan, Dani ; Lestari, Puji ; Yoon, Min Y. ; Kim, Moon Y. ; Chitikineni, Annapurna ; Tanya, Patcharin ; Somta, Prakit ; Srinives, Peerasak ; Varshney, Rajeev K. ; Lee, Suk‐Ha</creator><creatorcontrib>Ha, Jungmin ; Shim, Sangrea ; Lee, Taeyoung ; Kang, Yang J. ; Hwang, Won J. ; Jeong, Haneul ; Laosatit, Kularb ; Lee, Jayern ; Kim, Sue K. ; Satyawan, Dani ; Lestari, Puji ; Yoon, Min Y. ; Kim, Moon Y. ; Chitikineni, Annapurna ; Tanya, Patcharin ; Somta, Prakit ; Srinives, Peerasak ; Varshney, Rajeev K. ; Lee, Suk‐Ha</creatorcontrib><description>Summary
Jatropha curcas (physic nut), a non‐edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up‐regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12995</identifier><identifier>PMID: 30059608</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Acyltransferase ; Adaptability ; Alternative energy ; Alternative energy sources ; Analysis ; Animal feed ; biodiesel ; Biodiesel fuels ; Biofuels ; Biosynthesis ; biotechnology ; castor beans ; Chromosome Mapping ; Crop yields ; Crops ; Developmental stages ; Diglycerides ; diterpenoids ; Divergence ; DNA sequencing ; Energy efficiency ; energy production ; Euphorbiaceae - enzymology ; Euphorbiaceae - genetics ; Euphorbiaceae - growth & development ; Feeds ; female flowers ; females ; Flowers ; Fuel industry ; Gene Expression Profiling ; gene expression regulation ; Gene sequencing ; Genes ; Genetic aspects ; Genomes ; Genomics ; Homology ; Jatropha ; Jatropha - enzymology ; Jatropha - genetics ; Jatropha - growth & development ; Jatropha curcas ; lipid content ; Lipids ; Lipids - biosynthesis ; males ; Molecular Sequence Annotation ; Multigene Family ; Nucleotide sequence ; nucleotide sequences ; Nucleotide sequencing ; oil synthesis ; Oils & fats ; oilseed cakes ; oilseed crops ; Oleosin ; PDAT (acyltransferase) ; phorbol ester ; Phorbol esters ; Phorbol Esters - metabolism ; Phospholipids ; Phosphorus-Oxygen Lyases - genetics ; Phosphorus-Oxygen Lyases - metabolism ; phylogenetic analysis ; Phylogeny ; Physiological aspects ; Plant Breeding ; Plant Oils - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; seed cake ; seed development ; seed oils ; seed storage ; Seeds ; Seeds - enzymology ; Seeds - genetics ; Seeds - growth & development ; toxic substances ; transcriptomics ; triacylglycerols ; Triglycerides</subject><ispartof>Plant biotechnology journal, 2019-02, Vol.17 (2), p.517-530</ispartof><rights>2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5155-572587cc6728a860e2588d57c48c593090b4f984c6ab85e6df16872738ccdec93</citedby><cites>FETCH-LOGICAL-c5155-572587cc6728a860e2588d57c48c593090b4f984c6ab85e6df16872738ccdec93</cites><orcidid>0000-0002-4562-9131 ; 0000-0002-5946-6185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12995$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12995$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,861,882,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30059608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Jungmin</creatorcontrib><creatorcontrib>Shim, Sangrea</creatorcontrib><creatorcontrib>Lee, Taeyoung</creatorcontrib><creatorcontrib>Kang, Yang J.</creatorcontrib><creatorcontrib>Hwang, Won J.</creatorcontrib><creatorcontrib>Jeong, Haneul</creatorcontrib><creatorcontrib>Laosatit, Kularb</creatorcontrib><creatorcontrib>Lee, Jayern</creatorcontrib><creatorcontrib>Kim, Sue K.</creatorcontrib><creatorcontrib>Satyawan, Dani</creatorcontrib><creatorcontrib>Lestari, Puji</creatorcontrib><creatorcontrib>Yoon, Min Y.</creatorcontrib><creatorcontrib>Kim, Moon Y.</creatorcontrib><creatorcontrib>Chitikineni, Annapurna</creatorcontrib><creatorcontrib>Tanya, Patcharin</creatorcontrib><creatorcontrib>Somta, Prakit</creatorcontrib><creatorcontrib>Srinives, Peerasak</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><creatorcontrib>Lee, Suk‐Ha</creatorcontrib><title>Genome sequence of Jatropha curcas L., a non‐edible biodiesel plant, provides a resource to improve seed‐related traits</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Jatropha curcas (physic nut), a non‐edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up‐regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed.</description><subject>Acyltransferase</subject><subject>Adaptability</subject><subject>Alternative energy</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Animal feed</subject><subject>biodiesel</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biosynthesis</subject><subject>biotechnology</subject><subject>castor beans</subject><subject>Chromosome Mapping</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Developmental stages</subject><subject>Diglycerides</subject><subject>diterpenoids</subject><subject>Divergence</subject><subject>DNA sequencing</subject><subject>Energy efficiency</subject><subject>energy production</subject><subject>Euphorbiaceae - enzymology</subject><subject>Euphorbiaceae - genetics</subject><subject>Euphorbiaceae - growth & development</subject><subject>Feeds</subject><subject>female flowers</subject><subject>females</subject><subject>Flowers</subject><subject>Fuel industry</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homology</subject><subject>Jatropha</subject><subject>Jatropha - enzymology</subject><subject>Jatropha - genetics</subject><subject>Jatropha - growth & development</subject><subject>Jatropha curcas</subject><subject>lipid content</subject><subject>Lipids</subject><subject>Lipids - biosynthesis</subject><subject>males</subject><subject>Molecular Sequence Annotation</subject><subject>Multigene Family</subject><subject>Nucleotide sequence</subject><subject>nucleotide sequences</subject><subject>Nucleotide sequencing</subject><subject>oil synthesis</subject><subject>Oils & fats</subject><subject>oilseed cakes</subject><subject>oilseed crops</subject><subject>Oleosin</subject><subject>PDAT (acyltransferase)</subject><subject>phorbol ester</subject><subject>Phorbol esters</subject><subject>Phorbol Esters - metabolism</subject><subject>Phospholipids</subject><subject>Phosphorus-Oxygen Lyases - genetics</subject><subject>Phosphorus-Oxygen Lyases - metabolism</subject><subject>phylogenetic analysis</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Plant Breeding</subject><subject>Plant Oils - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>seed cake</subject><subject>seed development</subject><subject>seed oils</subject><subject>seed storage</subject><subject>Seeds</subject><subject>Seeds - enzymology</subject><subject>Seeds - genetics</subject><subject>Seeds - growth & development</subject><subject>toxic substances</subject><subject>transcriptomics</subject><subject>triacylglycerols</subject><subject>Triglycerides</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1ks1u1DAQxyMEoh9w4AWQJS5U6m4dx1-5VCoVlKKV4ABny7EnravEDna2qOLCI_CMPAmzbFkBEvbBH_Ob_3jGU1XParqscZxMXVjWrG3Fg2q_5lItlBTs4W7P-V51UMoNpayWQj6u9hpKRSup3q--XkBMI5ACn9cQHZDUk3d2zmm6tsSts7OFrJbHxJKY4o9v38GHbgDSheQDFBjINNg4H5Mpp9vgoSCYoSR0BDInEsaNYSMPHr0zDHYGT-Zsw1yeVI96OxR4er8eVp_evP54_naxen9xeX62WjhRC7EQigmtnJOKaaslBTxqL5Tj2om2oS3teN9q7qTttADp-1pqxVSjnfPg2uawOt3qTutuBO8gYvzBTDmMNt-ZZIP52xLDtblKt0Y2jaCKocDLe4GcsExlNmMoDgZMHdK6GCYYZ5yLmiP64h_0BosRMT2DxVeNapmWSC231JUdwITYJ4zrcHoYg0sR-oD3Z6ppGH6T2sgebR1cTqVk6Hevr6nZ9IDBHjC_egDZ53-muyN_fzoCJ1vgC0a5-7-S-fDqciv5E9abvXQ</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Ha, Jungmin</creator><creator>Shim, Sangrea</creator><creator>Lee, Taeyoung</creator><creator>Kang, Yang J.</creator><creator>Hwang, Won J.</creator><creator>Jeong, Haneul</creator><creator>Laosatit, Kularb</creator><creator>Lee, Jayern</creator><creator>Kim, Sue K.</creator><creator>Satyawan, Dani</creator><creator>Lestari, Puji</creator><creator>Yoon, Min Y.</creator><creator>Kim, Moon Y.</creator><creator>Chitikineni, Annapurna</creator><creator>Tanya, Patcharin</creator><creator>Somta, Prakit</creator><creator>Srinives, Peerasak</creator><creator>Varshney, Rajeev K.</creator><creator>Lee, Suk‐Ha</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-5946-6185</orcidid></search><sort><creationdate>201902</creationdate><title>Genome sequence of Jatropha curcas L., a non‐edible biodiesel plant, provides a resource to improve seed‐related traits</title><author>Ha, Jungmin ; Shim, Sangrea ; Lee, Taeyoung ; Kang, Yang J. ; Hwang, Won J. ; Jeong, Haneul ; Laosatit, Kularb ; Lee, Jayern ; Kim, Sue K. ; Satyawan, Dani ; Lestari, Puji ; Yoon, Min Y. ; Kim, Moon Y. ; Chitikineni, Annapurna ; Tanya, Patcharin ; Somta, Prakit ; Srinives, Peerasak ; Varshney, Rajeev K. ; Lee, Suk‐Ha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5155-572587cc6728a860e2588d57c48c593090b4f984c6ab85e6df16872738ccdec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acyltransferase</topic><topic>Adaptability</topic><topic>Alternative energy</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Animal feed</topic><topic>biodiesel</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biosynthesis</topic><topic>biotechnology</topic><topic>castor beans</topic><topic>Chromosome Mapping</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Developmental stages</topic><topic>Diglycerides</topic><topic>diterpenoids</topic><topic>Divergence</topic><topic>DNA sequencing</topic><topic>Energy efficiency</topic><topic>energy production</topic><topic>Euphorbiaceae - enzymology</topic><topic>Euphorbiaceae - genetics</topic><topic>Euphorbiaceae - growth & development</topic><topic>Feeds</topic><topic>female flowers</topic><topic>females</topic><topic>Flowers</topic><topic>Fuel industry</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homology</topic><topic>Jatropha</topic><topic>Jatropha - enzymology</topic><topic>Jatropha - genetics</topic><topic>Jatropha - growth & development</topic><topic>Jatropha curcas</topic><topic>lipid content</topic><topic>Lipids</topic><topic>Lipids - biosynthesis</topic><topic>males</topic><topic>Molecular Sequence Annotation</topic><topic>Multigene Family</topic><topic>Nucleotide sequence</topic><topic>nucleotide sequences</topic><topic>Nucleotide sequencing</topic><topic>oil synthesis</topic><topic>Oils & fats</topic><topic>oilseed cakes</topic><topic>oilseed crops</topic><topic>Oleosin</topic><topic>PDAT (acyltransferase)</topic><topic>phorbol ester</topic><topic>Phorbol esters</topic><topic>Phorbol Esters - metabolism</topic><topic>Phospholipids</topic><topic>Phosphorus-Oxygen Lyases - genetics</topic><topic>Phosphorus-Oxygen Lyases - metabolism</topic><topic>phylogenetic analysis</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Plant Breeding</topic><topic>Plant Oils - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>seed cake</topic><topic>seed development</topic><topic>seed oils</topic><topic>seed storage</topic><topic>Seeds</topic><topic>Seeds - enzymology</topic><topic>Seeds - genetics</topic><topic>Seeds - growth & development</topic><topic>toxic substances</topic><topic>transcriptomics</topic><topic>triacylglycerols</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Jungmin</creatorcontrib><creatorcontrib>Shim, Sangrea</creatorcontrib><creatorcontrib>Lee, Taeyoung</creatorcontrib><creatorcontrib>Kang, Yang J.</creatorcontrib><creatorcontrib>Hwang, Won J.</creatorcontrib><creatorcontrib>Jeong, Haneul</creatorcontrib><creatorcontrib>Laosatit, Kularb</creatorcontrib><creatorcontrib>Lee, Jayern</creatorcontrib><creatorcontrib>Kim, Sue K.</creatorcontrib><creatorcontrib>Satyawan, Dani</creatorcontrib><creatorcontrib>Lestari, Puji</creatorcontrib><creatorcontrib>Yoon, Min Y.</creatorcontrib><creatorcontrib>Kim, Moon Y.</creatorcontrib><creatorcontrib>Chitikineni, Annapurna</creatorcontrib><creatorcontrib>Tanya, Patcharin</creatorcontrib><creatorcontrib>Somta, Prakit</creatorcontrib><creatorcontrib>Srinives, Peerasak</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><creatorcontrib>Lee, Suk‐Ha</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Jungmin</au><au>Shim, Sangrea</au><au>Lee, Taeyoung</au><au>Kang, Yang J.</au><au>Hwang, Won J.</au><au>Jeong, Haneul</au><au>Laosatit, Kularb</au><au>Lee, Jayern</au><au>Kim, Sue K.</au><au>Satyawan, Dani</au><au>Lestari, Puji</au><au>Yoon, Min Y.</au><au>Kim, Moon Y.</au><au>Chitikineni, Annapurna</au><au>Tanya, Patcharin</au><au>Somta, Prakit</au><au>Srinives, Peerasak</au><au>Varshney, Rajeev K.</au><au>Lee, Suk‐Ha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome sequence of Jatropha curcas L., a non‐edible biodiesel plant, provides a resource to improve seed‐related traits</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2019-02</date><risdate>2019</risdate><volume>17</volume><issue>2</issue><spage>517</spage><epage>530</epage><pages>517-530</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Jatropha curcas (physic nut), a non‐edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up‐regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>30059608</pmid><doi>10.1111/pbi.12995</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-5946-6185</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2019-02, Vol.17 (2), p.517-530 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6335072 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access |
subjects | Acyltransferase Adaptability Alternative energy Alternative energy sources Analysis Animal feed biodiesel Biodiesel fuels Biofuels Biosynthesis biotechnology castor beans Chromosome Mapping Crop yields Crops Developmental stages Diglycerides diterpenoids Divergence DNA sequencing Energy efficiency energy production Euphorbiaceae - enzymology Euphorbiaceae - genetics Euphorbiaceae - growth & development Feeds female flowers females Flowers Fuel industry Gene Expression Profiling gene expression regulation Gene sequencing Genes Genetic aspects Genomes Genomics Homology Jatropha Jatropha - enzymology Jatropha - genetics Jatropha - growth & development Jatropha curcas lipid content Lipids Lipids - biosynthesis males Molecular Sequence Annotation Multigene Family Nucleotide sequence nucleotide sequences Nucleotide sequencing oil synthesis Oils & fats oilseed cakes oilseed crops Oleosin PDAT (acyltransferase) phorbol ester Phorbol esters Phorbol Esters - metabolism Phospholipids Phosphorus-Oxygen Lyases - genetics Phosphorus-Oxygen Lyases - metabolism phylogenetic analysis Phylogeny Physiological aspects Plant Breeding Plant Oils - metabolism Plant Proteins - genetics Plant Proteins - metabolism seed cake seed development seed oils seed storage Seeds Seeds - enzymology Seeds - genetics Seeds - growth & development toxic substances transcriptomics triacylglycerols Triglycerides |
title | Genome sequence of Jatropha curcas L., a non‐edible biodiesel plant, provides a resource to improve seed‐related traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20sequence%20of%20Jatropha%20curcas%20L.,%20a%20non%E2%80%90edible%20biodiesel%20plant,%20provides%20a%20resource%20to%20improve%20seed%E2%80%90related%20traits&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Ha,%20Jungmin&rft.date=2019-02&rft.volume=17&rft.issue=2&rft.spage=517&rft.epage=530&rft.pages=517-530&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12995&rft_dat=%3Cgale_pubme%3EA733296074%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167379286&rft_id=info:pmid/30059608&rft_galeid=A733296074&rfr_iscdi=true |