Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties
The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “...
Gespeichert in:
Veröffentlicht in: | Journal of comparative neurology (1911) 2019-03, Vol.527 (4), p.833-842 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 842 |
---|---|
container_issue | 4 |
container_start_page | 833 |
container_title | Journal of comparative neurology (1911) |
container_volume | 527 |
creator | Masterson, S. P. Zhou, N. Akers, B. K. Dang, W. Bickford, M. E. |
description | The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “freezing.” However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP‐labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non‐GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin‐labeling of recorded neurons revealed that wide‐field vertical (WFV) and non‐WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1–20 Hz. In contrast, in the majority of non‐WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus.
Electron microscopy revealed that the majority of corticotectal terminals (purple overlay) contact (arrow) small non‐GABAergic dendrites (green overlay). Excitatory postsynaptic responses (green traces) to optogenetic activation of corticotectal terminals (purple) were recorded in vitro in a variety of cell types; wide field vertical cells (green neuron) displayed the most uniform responses. |
doi_str_mv | 10.1002/cne.24538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6333520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167013672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4438-68dc926cf173432e88142e90a72c8968ab7704b0e968a00caff6a283f959a9583</originalsourceid><addsrcrecordid>eNp1kU1rGzEQhkVJaBy3h_6BsJBLcthYH7ta6VIoxvmAkFzqXnoQsjzrKKylraRt8L-vXLumCeSkYebRw0gvQl8IviIY04lxcEWrmokPaESw5KUUnByhUZ6RUkrenKDTGJ8xxlIy8RGdMEzrWrJ6hH7OuxR0TGEwaQi6K7RbFr5PfgUOkjXF0sYIJlnvCt8WP0hhfMh9n3Iz4wnC2rpcxI3T_fZCH3wPGYH4CR23uovweX-O0fx69n16W94_3txNv92XpqqYKLlYGkm5aUnDKkZBCFJRkFg31AjJhV40Da4WGLY1xka3LddUsFbWUstasDH6uvP2w2INSwMuP6lTfbBrHTbKa6teT5x9Uiv_W3HGWE1xFlzsBcH_GiAmtbbRQNdpB36IihJCOSFENhk9f4M--yHkD9hSvMGE8YZm6nJHmeBjDNAeliFYbSNTOTL1N7LMnv2__YH8l1EGJjvgxXawed-kpg-znfIPrXuhmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167013672</pqid></control><display><type>article</type><title>Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Masterson, S. P. ; Zhou, N. ; Akers, B. K. ; Dang, W. ; Bickford, M. E.</creator><creatorcontrib>Masterson, S. P. ; Zhou, N. ; Akers, B. K. ; Dang, W. ; Bickford, M. E.</creatorcontrib><description>The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “freezing.” However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP‐labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non‐GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin‐labeling of recorded neurons revealed that wide‐field vertical (WFV) and non‐WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1–20 Hz. In contrast, in the majority of non‐WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus.
Electron microscopy revealed that the majority of corticotectal terminals (purple overlay) contact (arrow) small non‐GABAergic dendrites (green overlay). Excitatory postsynaptic responses (green traces) to optogenetic activation of corticotectal terminals (purple) were recorded in vitro in a variety of cell types; wide field vertical cells (green neuron) displayed the most uniform responses.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.24538</identifier><identifier>PMID: 30255935</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Anterograde transport ; Biocytin ; channelrhodopsin ; Dendrites ; Electron microscopy ; excitatory postsynaptic potential ; Excitatory postsynaptic potentials ; Freezing ; GABA ; GAD67 ; Green fluorescent protein ; Interneurons ; Pulvinar ; RRID: nif‐000‐30467 ; RRID:AB_10015246 ; RRID:AB_477652 ; RRID:AB_91337 ; Sensorimotor integration ; Sensory integration ; Somatosensory cortex ; Superior colliculus ; synapse ; Visual cortex ; Visual pathways ; widefield vertical ; γ-Aminobutyric acid</subject><ispartof>Journal of comparative neurology (1911), 2019-03, Vol.527 (4), p.833-842</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4438-68dc926cf173432e88142e90a72c8968ab7704b0e968a00caff6a283f959a9583</citedby><cites>FETCH-LOGICAL-c4438-68dc926cf173432e88142e90a72c8968ab7704b0e968a00caff6a283f959a9583</cites><orcidid>0000-0002-0259-7395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.24538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.24538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30255935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masterson, S. P.</creatorcontrib><creatorcontrib>Zhou, N.</creatorcontrib><creatorcontrib>Akers, B. K.</creatorcontrib><creatorcontrib>Dang, W.</creatorcontrib><creatorcontrib>Bickford, M. E.</creatorcontrib><title>Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties</title><title>Journal of comparative neurology (1911)</title><addtitle>J Comp Neurol</addtitle><description>The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “freezing.” However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP‐labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non‐GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin‐labeling of recorded neurons revealed that wide‐field vertical (WFV) and non‐WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1–20 Hz. In contrast, in the majority of non‐WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus.
Electron microscopy revealed that the majority of corticotectal terminals (purple overlay) contact (arrow) small non‐GABAergic dendrites (green overlay). Excitatory postsynaptic responses (green traces) to optogenetic activation of corticotectal terminals (purple) were recorded in vitro in a variety of cell types; wide field vertical cells (green neuron) displayed the most uniform responses.</description><subject>Anterograde transport</subject><subject>Biocytin</subject><subject>channelrhodopsin</subject><subject>Dendrites</subject><subject>Electron microscopy</subject><subject>excitatory postsynaptic potential</subject><subject>Excitatory postsynaptic potentials</subject><subject>Freezing</subject><subject>GABA</subject><subject>GAD67</subject><subject>Green fluorescent protein</subject><subject>Interneurons</subject><subject>Pulvinar</subject><subject>RRID: nif‐000‐30467</subject><subject>RRID:AB_10015246</subject><subject>RRID:AB_477652</subject><subject>RRID:AB_91337</subject><subject>Sensorimotor integration</subject><subject>Sensory integration</subject><subject>Somatosensory cortex</subject><subject>Superior colliculus</subject><subject>synapse</subject><subject>Visual cortex</subject><subject>Visual pathways</subject><subject>widefield vertical</subject><subject>γ-Aminobutyric acid</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rGzEQhkVJaBy3h_6BsJBLcthYH7ta6VIoxvmAkFzqXnoQsjzrKKylraRt8L-vXLumCeSkYebRw0gvQl8IviIY04lxcEWrmokPaESw5KUUnByhUZ6RUkrenKDTGJ8xxlIy8RGdMEzrWrJ6hH7OuxR0TGEwaQi6K7RbFr5PfgUOkjXF0sYIJlnvCt8WP0hhfMh9n3Iz4wnC2rpcxI3T_fZCH3wPGYH4CR23uovweX-O0fx69n16W94_3txNv92XpqqYKLlYGkm5aUnDKkZBCFJRkFg31AjJhV40Da4WGLY1xka3LddUsFbWUstasDH6uvP2w2INSwMuP6lTfbBrHTbKa6teT5x9Uiv_W3HGWE1xFlzsBcH_GiAmtbbRQNdpB36IihJCOSFENhk9f4M--yHkD9hSvMGE8YZm6nJHmeBjDNAeliFYbSNTOTL1N7LMnv2__YH8l1EGJjvgxXawed-kpg-znfIPrXuhmA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Masterson, S. P.</creator><creator>Zhou, N.</creator><creator>Akers, B. K.</creator><creator>Dang, W.</creator><creator>Bickford, M. E.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0259-7395</orcidid></search><sort><creationdate>20190301</creationdate><title>Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties</title><author>Masterson, S. P. ; Zhou, N. ; Akers, B. K. ; Dang, W. ; Bickford, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4438-68dc926cf173432e88142e90a72c8968ab7704b0e968a00caff6a283f959a9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anterograde transport</topic><topic>Biocytin</topic><topic>channelrhodopsin</topic><topic>Dendrites</topic><topic>Electron microscopy</topic><topic>excitatory postsynaptic potential</topic><topic>Excitatory postsynaptic potentials</topic><topic>Freezing</topic><topic>GABA</topic><topic>GAD67</topic><topic>Green fluorescent protein</topic><topic>Interneurons</topic><topic>Pulvinar</topic><topic>RRID: nif‐000‐30467</topic><topic>RRID:AB_10015246</topic><topic>RRID:AB_477652</topic><topic>RRID:AB_91337</topic><topic>Sensorimotor integration</topic><topic>Sensory integration</topic><topic>Somatosensory cortex</topic><topic>Superior colliculus</topic><topic>synapse</topic><topic>Visual cortex</topic><topic>Visual pathways</topic><topic>widefield vertical</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masterson, S. P.</creatorcontrib><creatorcontrib>Zhou, N.</creatorcontrib><creatorcontrib>Akers, B. K.</creatorcontrib><creatorcontrib>Dang, W.</creatorcontrib><creatorcontrib>Bickford, M. E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masterson, S. P.</au><au>Zhou, N.</au><au>Akers, B. K.</au><au>Dang, W.</au><au>Bickford, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J Comp Neurol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>527</volume><issue>4</issue><spage>833</spage><epage>842</epage><pages>833-842</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “freezing.” However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP‐labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non‐GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin‐labeling of recorded neurons revealed that wide‐field vertical (WFV) and non‐WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1–20 Hz. In contrast, in the majority of non‐WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus.
Electron microscopy revealed that the majority of corticotectal terminals (purple overlay) contact (arrow) small non‐GABAergic dendrites (green overlay). Excitatory postsynaptic responses (green traces) to optogenetic activation of corticotectal terminals (purple) were recorded in vitro in a variety of cell types; wide field vertical cells (green neuron) displayed the most uniform responses.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30255935</pmid><doi>10.1002/cne.24538</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0259-7395</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9967 |
ispartof | Journal of comparative neurology (1911), 2019-03, Vol.527 (4), p.833-842 |
issn | 0021-9967 1096-9861 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6333520 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anterograde transport Biocytin channelrhodopsin Dendrites Electron microscopy excitatory postsynaptic potential Excitatory postsynaptic potentials Freezing GABA GAD67 Green fluorescent protein Interneurons Pulvinar RRID: nif‐000‐30467 RRID:AB_10015246 RRID:AB_477652 RRID:AB_91337 Sensorimotor integration Sensory integration Somatosensory cortex Superior colliculus synapse Visual cortex Visual pathways widefield vertical γ-Aminobutyric acid |
title | Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrastructural%20and%20optogenetic%20dissection%20of%20V1%20corticotectal%20terminal%20synaptic%20properties&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Masterson,%20S.%20P.&rft.date=2019-03-01&rft.volume=527&rft.issue=4&rft.spage=833&rft.epage=842&rft.pages=833-842&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.24538&rft_dat=%3Cproquest_pubme%3E2167013672%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167013672&rft_id=info:pmid/30255935&rfr_iscdi=true |