Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties

The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2019-03, Vol.527 (4), p.833-842
Hauptverfasser: Masterson, S. P., Zhou, N., Akers, B. K., Dang, W., Bickford, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 842
container_issue 4
container_start_page 833
container_title Journal of comparative neurology (1911)
container_volume 527
creator Masterson, S. P.
Zhou, N.
Akers, B. K.
Dang, W.
Bickford, M. E.
description The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “freezing.” However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP‐labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non‐GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin‐labeling of recorded neurons revealed that wide‐field vertical (WFV) and non‐WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1–20 Hz. In contrast, in the majority of non‐WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus. Electron microscopy revealed that the majority of corticotectal terminals (purple overlay) contact (arrow) small non‐GABAergic dendrites (green overlay). Excitatory postsynaptic responses (green traces) to optogenetic activation of corticotectal terminals (purple) were recorded in vitro in a variety of cell types; wide field vertical cells (green neuron) displayed the most uniform responses.
doi_str_mv 10.1002/cne.24538
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6333520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167013672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4438-68dc926cf173432e88142e90a72c8968ab7704b0e968a00caff6a283f959a9583</originalsourceid><addsrcrecordid>eNp1kU1rGzEQhkVJaBy3h_6BsJBLcthYH7ta6VIoxvmAkFzqXnoQsjzrKKylraRt8L-vXLumCeSkYebRw0gvQl8IviIY04lxcEWrmokPaESw5KUUnByhUZ6RUkrenKDTGJ8xxlIy8RGdMEzrWrJ6hH7OuxR0TGEwaQi6K7RbFr5PfgUOkjXF0sYIJlnvCt8WP0hhfMh9n3Iz4wnC2rpcxI3T_fZCH3wPGYH4CR23uovweX-O0fx69n16W94_3txNv92XpqqYKLlYGkm5aUnDKkZBCFJRkFg31AjJhV40Da4WGLY1xka3LddUsFbWUstasDH6uvP2w2INSwMuP6lTfbBrHTbKa6teT5x9Uiv_W3HGWE1xFlzsBcH_GiAmtbbRQNdpB36IihJCOSFENhk9f4M--yHkD9hSvMGE8YZm6nJHmeBjDNAeliFYbSNTOTL1N7LMnv2__YH8l1EGJjvgxXawed-kpg-znfIPrXuhmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167013672</pqid></control><display><type>article</type><title>Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Masterson, S. P. ; Zhou, N. ; Akers, B. K. ; Dang, W. ; Bickford, M. E.</creator><creatorcontrib>Masterson, S. P. ; Zhou, N. ; Akers, B. K. ; Dang, W. ; Bickford, M. E.</creatorcontrib><description>The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “freezing.” However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP‐labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non‐GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin‐labeling of recorded neurons revealed that wide‐field vertical (WFV) and non‐WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1–20 Hz. In contrast, in the majority of non‐WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus. Electron microscopy revealed that the majority of corticotectal terminals (purple overlay) contact (arrow) small non‐GABAergic dendrites (green overlay). Excitatory postsynaptic responses (green traces) to optogenetic activation of corticotectal terminals (purple) were recorded in vitro in a variety of cell types; wide field vertical cells (green neuron) displayed the most uniform responses.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.24538</identifier><identifier>PMID: 30255935</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Anterograde transport ; Biocytin ; channelrhodopsin ; Dendrites ; Electron microscopy ; excitatory postsynaptic potential ; Excitatory postsynaptic potentials ; Freezing ; GABA ; GAD67 ; Green fluorescent protein ; Interneurons ; Pulvinar ; RRID: nif‐000‐30467 ; RRID:AB_10015246 ; RRID:AB_477652 ; RRID:AB_91337 ; Sensorimotor integration ; Sensory integration ; Somatosensory cortex ; Superior colliculus ; synapse ; Visual cortex ; Visual pathways ; widefield vertical ; γ-Aminobutyric acid</subject><ispartof>Journal of comparative neurology (1911), 2019-03, Vol.527 (4), p.833-842</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4438-68dc926cf173432e88142e90a72c8968ab7704b0e968a00caff6a283f959a9583</citedby><cites>FETCH-LOGICAL-c4438-68dc926cf173432e88142e90a72c8968ab7704b0e968a00caff6a283f959a9583</cites><orcidid>0000-0002-0259-7395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.24538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.24538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30255935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masterson, S. P.</creatorcontrib><creatorcontrib>Zhou, N.</creatorcontrib><creatorcontrib>Akers, B. K.</creatorcontrib><creatorcontrib>Dang, W.</creatorcontrib><creatorcontrib>Bickford, M. E.</creatorcontrib><title>Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties</title><title>Journal of comparative neurology (1911)</title><addtitle>J Comp Neurol</addtitle><description>The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “freezing.” However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP‐labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non‐GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin‐labeling of recorded neurons revealed that wide‐field vertical (WFV) and non‐WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1–20 Hz. In contrast, in the majority of non‐WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus. Electron microscopy revealed that the majority of corticotectal terminals (purple overlay) contact (arrow) small non‐GABAergic dendrites (green overlay). Excitatory postsynaptic responses (green traces) to optogenetic activation of corticotectal terminals (purple) were recorded in vitro in a variety of cell types; wide field vertical cells (green neuron) displayed the most uniform responses.</description><subject>Anterograde transport</subject><subject>Biocytin</subject><subject>channelrhodopsin</subject><subject>Dendrites</subject><subject>Electron microscopy</subject><subject>excitatory postsynaptic potential</subject><subject>Excitatory postsynaptic potentials</subject><subject>Freezing</subject><subject>GABA</subject><subject>GAD67</subject><subject>Green fluorescent protein</subject><subject>Interneurons</subject><subject>Pulvinar</subject><subject>RRID: nif‐000‐30467</subject><subject>RRID:AB_10015246</subject><subject>RRID:AB_477652</subject><subject>RRID:AB_91337</subject><subject>Sensorimotor integration</subject><subject>Sensory integration</subject><subject>Somatosensory cortex</subject><subject>Superior colliculus</subject><subject>synapse</subject><subject>Visual cortex</subject><subject>Visual pathways</subject><subject>widefield vertical</subject><subject>γ-Aminobutyric acid</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rGzEQhkVJaBy3h_6BsJBLcthYH7ta6VIoxvmAkFzqXnoQsjzrKKylraRt8L-vXLumCeSkYebRw0gvQl8IviIY04lxcEWrmokPaESw5KUUnByhUZ6RUkrenKDTGJ8xxlIy8RGdMEzrWrJ6hH7OuxR0TGEwaQi6K7RbFr5PfgUOkjXF0sYIJlnvCt8WP0hhfMh9n3Iz4wnC2rpcxI3T_fZCH3wPGYH4CR23uovweX-O0fx69n16W94_3txNv92XpqqYKLlYGkm5aUnDKkZBCFJRkFg31AjJhV40Da4WGLY1xka3LddUsFbWUstasDH6uvP2w2INSwMuP6lTfbBrHTbKa6teT5x9Uiv_W3HGWE1xFlzsBcH_GiAmtbbRQNdpB36IihJCOSFENhk9f4M--yHkD9hSvMGE8YZm6nJHmeBjDNAeliFYbSNTOTL1N7LMnv2__YH8l1EGJjvgxXawed-kpg-znfIPrXuhmA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Masterson, S. P.</creator><creator>Zhou, N.</creator><creator>Akers, B. K.</creator><creator>Dang, W.</creator><creator>Bickford, M. E.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0259-7395</orcidid></search><sort><creationdate>20190301</creationdate><title>Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties</title><author>Masterson, S. P. ; Zhou, N. ; Akers, B. K. ; Dang, W. ; Bickford, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4438-68dc926cf173432e88142e90a72c8968ab7704b0e968a00caff6a283f959a9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anterograde transport</topic><topic>Biocytin</topic><topic>channelrhodopsin</topic><topic>Dendrites</topic><topic>Electron microscopy</topic><topic>excitatory postsynaptic potential</topic><topic>Excitatory postsynaptic potentials</topic><topic>Freezing</topic><topic>GABA</topic><topic>GAD67</topic><topic>Green fluorescent protein</topic><topic>Interneurons</topic><topic>Pulvinar</topic><topic>RRID: nif‐000‐30467</topic><topic>RRID:AB_10015246</topic><topic>RRID:AB_477652</topic><topic>RRID:AB_91337</topic><topic>Sensorimotor integration</topic><topic>Sensory integration</topic><topic>Somatosensory cortex</topic><topic>Superior colliculus</topic><topic>synapse</topic><topic>Visual cortex</topic><topic>Visual pathways</topic><topic>widefield vertical</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masterson, S. P.</creatorcontrib><creatorcontrib>Zhou, N.</creatorcontrib><creatorcontrib>Akers, B. K.</creatorcontrib><creatorcontrib>Dang, W.</creatorcontrib><creatorcontrib>Bickford, M. E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masterson, S. P.</au><au>Zhou, N.</au><au>Akers, B. K.</au><au>Dang, W.</au><au>Bickford, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J Comp Neurol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>527</volume><issue>4</issue><spage>833</spage><epage>842</epage><pages>833-842</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including “freezing.” However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP‐labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non‐GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin‐labeling of recorded neurons revealed that wide‐field vertical (WFV) and non‐WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1–20 Hz. In contrast, in the majority of non‐WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus. Electron microscopy revealed that the majority of corticotectal terminals (purple overlay) contact (arrow) small non‐GABAergic dendrites (green overlay). Excitatory postsynaptic responses (green traces) to optogenetic activation of corticotectal terminals (purple) were recorded in vitro in a variety of cell types; wide field vertical cells (green neuron) displayed the most uniform responses.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30255935</pmid><doi>10.1002/cne.24538</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0259-7395</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2019-03, Vol.527 (4), p.833-842
issn 0021-9967
1096-9861
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6333520
source Wiley Online Library Journals Frontfile Complete
subjects Anterograde transport
Biocytin
channelrhodopsin
Dendrites
Electron microscopy
excitatory postsynaptic potential
Excitatory postsynaptic potentials
Freezing
GABA
GAD67
Green fluorescent protein
Interneurons
Pulvinar
RRID: nif‐000‐30467
RRID:AB_10015246
RRID:AB_477652
RRID:AB_91337
Sensorimotor integration
Sensory integration
Somatosensory cortex
Superior colliculus
synapse
Visual cortex
Visual pathways
widefield vertical
γ-Aminobutyric acid
title Ultrastructural and optogenetic dissection of V1 corticotectal terminal synaptic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrastructural%20and%20optogenetic%20dissection%20of%20V1%20corticotectal%20terminal%20synaptic%20properties&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Masterson,%20S.%20P.&rft.date=2019-03-01&rft.volume=527&rft.issue=4&rft.spage=833&rft.epage=842&rft.pages=833-842&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.24538&rft_dat=%3Cproquest_pubme%3E2167013672%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167013672&rft_id=info:pmid/30255935&rfr_iscdi=true