Cardiovascular Effects and Molecular Mechanisms of Bisphenol A and Its Metabolite MBP in Zebrafish

The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2019-01, Vol.53 (1), p.463-474
Hauptverfasser: Brown, A. Ross, Green, Jon M, Moreman, John, Gunnarsson, Lina M, Mourabit, Sulayman, Ball, Jonathan, Winter, Matthew J, Trznadel, Maciej, Correia, Ana, Hacker, Christian, Perry, Alexis, Wood, Mark E, Hetheridge, Malcolm J, Currie, Richard A, Tyler, Charles R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 1
container_start_page 463
container_title Environmental science & technology
container_volume 53
creator Brown, A. Ross
Green, Jon M
Moreman, John
Gunnarsson, Lina M
Mourabit, Sulayman
Ball, Jonathan
Winter, Matthew J
Trznadel, Maciej
Correia, Ana
Hacker, Christian
Perry, Alexis
Wood, Mark E
Hetheridge, Malcolm J
Currie, Richard A
Tyler, Charles R
description The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA’s reactive metabolite MBP and the development of valvular-cardiovascular disease states.
doi_str_mv 10.1021/acs.est.8b04281
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6333396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189550795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a490t-20b0474fb7b2d708e5850fabd6b4e88283c605362988a87bee481319577feafe3</originalsourceid><addsrcrecordid>eNp1kcFrFDEYxYNY7Fo9e5OAF0Fm-yWZyWQuQrvUWuiihxbES0hmvrgps5M1mSn0v2_W3S5aMJdA8nvvy8sj5B2DOQPOTk2b5pjGubJQcsVekBmrOBSVqthLMgNgomiE_HFMXqd0BwBcgHpFjgVkSgo-I3ZhYufDvUnt1JtIL5zDdkzUDB1dhh53p0tsV2bwaZ1ocPTcp80Kh9DTsz_cVeaXOBobej8iXZ5_p36gP9FG43xavSFHzvQJ3-73E3L75eJm8bW4_nZ5tTi7LkzZwFhwyBnq0tna8q4GhTkEOGM7aUtUiivRSqiE5I1SRtUWsVRMsKaqa4fGoTghn3e-m8musWtxGKPp9Sb6tYkPOhiv_70Z_Er_CvdairwamQ0-7g1i-D3lb9Vrn1rsezNgmJLmTDVVBXVTZfTDM_QuTHHI8TIllVKMS8jU6Y5qY0gpojs8hoHe9qdzf3qr3veXFe__znDgnwrLwKcdsFUeZv7P7hFIc6YU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168881260</pqid></control><display><type>article</type><title>Cardiovascular Effects and Molecular Mechanisms of Bisphenol A and Its Metabolite MBP in Zebrafish</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Brown, A. Ross ; Green, Jon M ; Moreman, John ; Gunnarsson, Lina M ; Mourabit, Sulayman ; Ball, Jonathan ; Winter, Matthew J ; Trznadel, Maciej ; Correia, Ana ; Hacker, Christian ; Perry, Alexis ; Wood, Mark E ; Hetheridge, Malcolm J ; Currie, Richard A ; Tyler, Charles R</creator><creatorcontrib>Brown, A. Ross ; Green, Jon M ; Moreman, John ; Gunnarsson, Lina M ; Mourabit, Sulayman ; Ball, Jonathan ; Winter, Matthew J ; Trznadel, Maciej ; Correia, Ana ; Hacker, Christian ; Perry, Alexis ; Wood, Mark E ; Hetheridge, Malcolm J ; Currie, Richard A ; Tyler, Charles R</creatorcontrib><description>The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA’s reactive metabolite MBP and the development of valvular-cardiovascular disease states.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.8b04281</identifier><identifier>PMID: 30520632</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animal models ; Animals ; Aortic valve ; Benzhydryl Compounds ; Biomarkers ; Bisphenol A ; Blood flow ; Cardiovascular disease ; Cardiovascular diseases ; Cardiovascular system ; Chemicals ; Child ; Children ; Collagen ; Computer simulation ; Curvature ; Danio rerio ; Embryos ; Environmental science ; Estrogens ; Exposure ; Extracellular matrix ; Fetuses ; Fluorescence ; Heart ; heart valve diseases ; Heart valves ; Histopathology ; Humans ; Metabolites ; Molecular modelling ; Organic chemistry ; Phenols ; Rheumatic heart disease ; Structural integrity ; tissues ; transcriptomics ; Ventricle ; Wildlife ; Xenoestrogens ; Zebrafish</subject><ispartof>Environmental science &amp; technology, 2019-01, Vol.53 (1), p.463-474</ispartof><rights>Copyright American Chemical Society Jan 2, 2019</rights><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a490t-20b0474fb7b2d708e5850fabd6b4e88283c605362988a87bee481319577feafe3</citedby><cites>FETCH-LOGICAL-a490t-20b0474fb7b2d708e5850fabd6b4e88283c605362988a87bee481319577feafe3</cites><orcidid>0000-0002-3892-8993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.8b04281$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.8b04281$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30520632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, A. Ross</creatorcontrib><creatorcontrib>Green, Jon M</creatorcontrib><creatorcontrib>Moreman, John</creatorcontrib><creatorcontrib>Gunnarsson, Lina M</creatorcontrib><creatorcontrib>Mourabit, Sulayman</creatorcontrib><creatorcontrib>Ball, Jonathan</creatorcontrib><creatorcontrib>Winter, Matthew J</creatorcontrib><creatorcontrib>Trznadel, Maciej</creatorcontrib><creatorcontrib>Correia, Ana</creatorcontrib><creatorcontrib>Hacker, Christian</creatorcontrib><creatorcontrib>Perry, Alexis</creatorcontrib><creatorcontrib>Wood, Mark E</creatorcontrib><creatorcontrib>Hetheridge, Malcolm J</creatorcontrib><creatorcontrib>Currie, Richard A</creatorcontrib><creatorcontrib>Tyler, Charles R</creatorcontrib><title>Cardiovascular Effects and Molecular Mechanisms of Bisphenol A and Its Metabolite MBP in Zebrafish</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA’s reactive metabolite MBP and the development of valvular-cardiovascular disease states.</description><subject>Animal models</subject><subject>Animals</subject><subject>Aortic valve</subject><subject>Benzhydryl Compounds</subject><subject>Biomarkers</subject><subject>Bisphenol A</subject><subject>Blood flow</subject><subject>Cardiovascular disease</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular system</subject><subject>Chemicals</subject><subject>Child</subject><subject>Children</subject><subject>Collagen</subject><subject>Computer simulation</subject><subject>Curvature</subject><subject>Danio rerio</subject><subject>Embryos</subject><subject>Environmental science</subject><subject>Estrogens</subject><subject>Exposure</subject><subject>Extracellular matrix</subject><subject>Fetuses</subject><subject>Fluorescence</subject><subject>Heart</subject><subject>heart valve diseases</subject><subject>Heart valves</subject><subject>Histopathology</subject><subject>Humans</subject><subject>Metabolites</subject><subject>Molecular modelling</subject><subject>Organic chemistry</subject><subject>Phenols</subject><subject>Rheumatic heart disease</subject><subject>Structural integrity</subject><subject>tissues</subject><subject>transcriptomics</subject><subject>Ventricle</subject><subject>Wildlife</subject><subject>Xenoestrogens</subject><subject>Zebrafish</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFrFDEYxYNY7Fo9e5OAF0Fm-yWZyWQuQrvUWuiihxbES0hmvrgps5M1mSn0v2_W3S5aMJdA8nvvy8sj5B2DOQPOTk2b5pjGubJQcsVekBmrOBSVqthLMgNgomiE_HFMXqd0BwBcgHpFjgVkSgo-I3ZhYufDvUnt1JtIL5zDdkzUDB1dhh53p0tsV2bwaZ1ocPTcp80Kh9DTsz_cVeaXOBobej8iXZ5_p36gP9FG43xavSFHzvQJ3-73E3L75eJm8bW4_nZ5tTi7LkzZwFhwyBnq0tna8q4GhTkEOGM7aUtUiivRSqiE5I1SRtUWsVRMsKaqa4fGoTghn3e-m8musWtxGKPp9Sb6tYkPOhiv_70Z_Er_CvdairwamQ0-7g1i-D3lb9Vrn1rsezNgmJLmTDVVBXVTZfTDM_QuTHHI8TIllVKMS8jU6Y5qY0gpojs8hoHe9qdzf3qr3veXFe__znDgnwrLwKcdsFUeZv7P7hFIc6YU</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Brown, A. Ross</creator><creator>Green, Jon M</creator><creator>Moreman, John</creator><creator>Gunnarsson, Lina M</creator><creator>Mourabit, Sulayman</creator><creator>Ball, Jonathan</creator><creator>Winter, Matthew J</creator><creator>Trznadel, Maciej</creator><creator>Correia, Ana</creator><creator>Hacker, Christian</creator><creator>Perry, Alexis</creator><creator>Wood, Mark E</creator><creator>Hetheridge, Malcolm J</creator><creator>Currie, Richard A</creator><creator>Tyler, Charles R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3892-8993</orcidid></search><sort><creationdate>20190102</creationdate><title>Cardiovascular Effects and Molecular Mechanisms of Bisphenol A and Its Metabolite MBP in Zebrafish</title><author>Brown, A. Ross ; Green, Jon M ; Moreman, John ; Gunnarsson, Lina M ; Mourabit, Sulayman ; Ball, Jonathan ; Winter, Matthew J ; Trznadel, Maciej ; Correia, Ana ; Hacker, Christian ; Perry, Alexis ; Wood, Mark E ; Hetheridge, Malcolm J ; Currie, Richard A ; Tyler, Charles R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a490t-20b0474fb7b2d708e5850fabd6b4e88283c605362988a87bee481319577feafe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Aortic valve</topic><topic>Benzhydryl Compounds</topic><topic>Biomarkers</topic><topic>Bisphenol A</topic><topic>Blood flow</topic><topic>Cardiovascular disease</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular system</topic><topic>Chemicals</topic><topic>Child</topic><topic>Children</topic><topic>Collagen</topic><topic>Computer simulation</topic><topic>Curvature</topic><topic>Danio rerio</topic><topic>Embryos</topic><topic>Environmental science</topic><topic>Estrogens</topic><topic>Exposure</topic><topic>Extracellular matrix</topic><topic>Fetuses</topic><topic>Fluorescence</topic><topic>Heart</topic><topic>heart valve diseases</topic><topic>Heart valves</topic><topic>Histopathology</topic><topic>Humans</topic><topic>Metabolites</topic><topic>Molecular modelling</topic><topic>Organic chemistry</topic><topic>Phenols</topic><topic>Rheumatic heart disease</topic><topic>Structural integrity</topic><topic>tissues</topic><topic>transcriptomics</topic><topic>Ventricle</topic><topic>Wildlife</topic><topic>Xenoestrogens</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, A. Ross</creatorcontrib><creatorcontrib>Green, Jon M</creatorcontrib><creatorcontrib>Moreman, John</creatorcontrib><creatorcontrib>Gunnarsson, Lina M</creatorcontrib><creatorcontrib>Mourabit, Sulayman</creatorcontrib><creatorcontrib>Ball, Jonathan</creatorcontrib><creatorcontrib>Winter, Matthew J</creatorcontrib><creatorcontrib>Trznadel, Maciej</creatorcontrib><creatorcontrib>Correia, Ana</creatorcontrib><creatorcontrib>Hacker, Christian</creatorcontrib><creatorcontrib>Perry, Alexis</creatorcontrib><creatorcontrib>Wood, Mark E</creatorcontrib><creatorcontrib>Hetheridge, Malcolm J</creatorcontrib><creatorcontrib>Currie, Richard A</creatorcontrib><creatorcontrib>Tyler, Charles R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, A. Ross</au><au>Green, Jon M</au><au>Moreman, John</au><au>Gunnarsson, Lina M</au><au>Mourabit, Sulayman</au><au>Ball, Jonathan</au><au>Winter, Matthew J</au><au>Trznadel, Maciej</au><au>Correia, Ana</au><au>Hacker, Christian</au><au>Perry, Alexis</au><au>Wood, Mark E</au><au>Hetheridge, Malcolm J</au><au>Currie, Richard A</au><au>Tyler, Charles R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiovascular Effects and Molecular Mechanisms of Bisphenol A and Its Metabolite MBP in Zebrafish</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-01-02</date><risdate>2019</risdate><volume>53</volume><issue>1</issue><spage>463</spage><epage>474</epage><pages>463-474</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA’s reactive metabolite MBP and the development of valvular-cardiovascular disease states.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30520632</pmid><doi>10.1021/acs.est.8b04281</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3892-8993</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2019-01, Vol.53 (1), p.463-474
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6333396
source American Chemical Society; MEDLINE
subjects Animal models
Animals
Aortic valve
Benzhydryl Compounds
Biomarkers
Bisphenol A
Blood flow
Cardiovascular disease
Cardiovascular diseases
Cardiovascular system
Chemicals
Child
Children
Collagen
Computer simulation
Curvature
Danio rerio
Embryos
Environmental science
Estrogens
Exposure
Extracellular matrix
Fetuses
Fluorescence
Heart
heart valve diseases
Heart valves
Histopathology
Humans
Metabolites
Molecular modelling
Organic chemistry
Phenols
Rheumatic heart disease
Structural integrity
tissues
transcriptomics
Ventricle
Wildlife
Xenoestrogens
Zebrafish
title Cardiovascular Effects and Molecular Mechanisms of Bisphenol A and Its Metabolite MBP in Zebrafish
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiovascular%20Effects%20and%20Molecular%20Mechanisms%20of%20Bisphenol%20A%20and%20Its%20Metabolite%20MBP%20in%20Zebrafish&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Brown,%20A.%20Ross&rft.date=2019-01-02&rft.volume=53&rft.issue=1&rft.spage=463&rft.epage=474&rft.pages=463-474&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.8b04281&rft_dat=%3Cproquest_pubme%3E2189550795%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168881260&rft_id=info:pmid/30520632&rfr_iscdi=true