Enhancing the signal strength of surface sensitive 2D IR spectroscopy
Spectroscopic techniques that are capable of measuring surfaces and interfaces must overcome two technical challenges: one, the low coverage of molecules at the surface, and two, discerning between signals from the bulk and surface. We present surface enhanced attenuated reflection 2D infrared (SEAR...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-01, Vol.150 (2), p.024707-024707 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spectroscopic techniques that are capable of measuring surfaces and interfaces must overcome two technical challenges: one, the low coverage of molecules at the surface, and two, discerning between signals from the bulk and surface. We present surface enhanced attenuated reflection 2D infrared (SEAR 2D IR) spectroscopy, a method that combines localized surface plasmons with a reflection pump-probe geometry to achieve monolayer sensitivity. The method is demonstrated at 6 µm with the amide I band of a model peptide, a cysteine terminated α-helical peptide tethered to a gold surface. Using SEAR 2D IR spectroscopy, the signal from this sample is enhanced 20 000-times over a monolayer on a dielectric surface. Like attenuated total reflection IR spectroscopy, SEAR 2D IR spectroscopy can be applied to strongly absorbing solvents. We demonstrated this capability by solvating a peptide monolayer with H2O, which cannot normally be used when measuring the amide I band. SEAR 2D IR spectroscopy will be advantageous for studying chemical reactions at electrochemical surfaces, interfacial charge transfer in photovoltaics, and structural changes of transmembrane proteins in lipid membranes. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.5065511 |