Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle

The current research was carried out to determine the associations between the rumen microbiota and traits related with feed efficiency in a Holstein cattle population (n = 30) using whole metagenome sequencing. Improving feed efficiency (FE) is important for a more sustainable livestock production....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-01, Vol.9 (1), p.11-11, Article 11
Hauptverfasser: Delgado, Beatriz, Bach, Alex, Guasch, Isabel, González, Carmen, Elcoso, Guillermo, Pryce, Jennie E., Gonzalez-Recio, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 11
container_title Scientific reports
container_volume 9
creator Delgado, Beatriz
Bach, Alex
Guasch, Isabel
González, Carmen
Elcoso, Guillermo
Pryce, Jennie E.
Gonzalez-Recio, Oscar
description The current research was carried out to determine the associations between the rumen microbiota and traits related with feed efficiency in a Holstein cattle population (n = 30) using whole metagenome sequencing. Improving feed efficiency (FE) is important for a more sustainable livestock production. The variability for the efficiency of feed utilization in ruminants is partially controlled by the gastrointestinal microbiota. Modulating the microbiota composition can promote a more sustainable and efficient livestock. This study revealed that most efficient cows had larger relative abundance of Bacteroidetes (P = 0.041) and Prevotella (P = 0.003), while lower, but non-significant (P = 0.119), relative abundance of Firmicutes . Methanobacteria (P = 0.004) and Methanobrevibacter (P = 0.003) were also less abundant in the high-efficiency cows. A de novo metagenome assembly was carried out using de Bruijn graphs in MEGAHIT resulting in 496,375 contigs. An agnostic pre-selection of microbial contigs allowed high classification accuracy for FE and intake levels using hierarchical classification. These microbial contigs were also able to predict FE and intake levels with accuracy of 0.19 and 0.39, respectively, in an independent population (n = 31). Nonetheless, a larger potential accuracy up to 0.69 was foreseen in this study for datasets that allowed a larger statistical power. Enrichment analyses showed that genes within these contigs were mainly involved in fatty acids and cellulose degradation pathways. The findings indicated that there are differences between the microbiota compositions of high and low-efficiency animals both at the taxonomical and gene levels. These differences are even more evident in terms of intake levels. Some of these differences remain even between populations under different diets and environments, and can provide information on the feed utilization performance without information on the individual intake level.
doi_str_mv 10.1038/s41598-018-36673-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6327033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179316459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-f30974761846a2a4213e238e9aba1c9ccfeea0ce0caa6073cee5b06f9b0c5293</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIRCE_kAOyxIXLgF_jGV-QUERCpEhcInG0er09GwePvdgzWe3f493NCw74YrerusrtIuSMs0-cyf5zUbw1fcN430itO9lsXpFjwVTbCCnE6xfnI3Jayh2rqxVGcfOWHEmmhTZMHZP08zYFpHkeMdIRJ1hhTCPSgr9njM7HFYUQ0qZQF6AUP2z3V3FJ1xmX3k27ckBcUhwG73zt2e5hHyf4hTTgPYZSK-pgmgK-I28GCAVPH_YTcnPx7eb8e3P94_Lq_Ot149qum5pBMtOpTvNeaRCgBJcoZI8GFsCdca5aAnPIHIBmnXSI7YLpwSyYq1PKE_LlILueFyMuHcYpQ7Dr7EfIW5vA27-R6G_tKt1bLUXHpKwCHx8Ecqo_USY7-uIwBIiY5mIF74zkWrU7rw__UO_SnGOdrrJ0q5UxmlWWOLBcTqVkHJ4ew5ndJWoPidqaqN0naje16f3LMZ5aHvOrBHkglArFFeZn7__I_gEe9q98</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165649960</pqid></control><display><type>article</type><title>Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Delgado, Beatriz ; Bach, Alex ; Guasch, Isabel ; González, Carmen ; Elcoso, Guillermo ; Pryce, Jennie E. ; Gonzalez-Recio, Oscar</creator><creatorcontrib>Delgado, Beatriz ; Bach, Alex ; Guasch, Isabel ; González, Carmen ; Elcoso, Guillermo ; Pryce, Jennie E. ; Gonzalez-Recio, Oscar</creatorcontrib><description>The current research was carried out to determine the associations between the rumen microbiota and traits related with feed efficiency in a Holstein cattle population (n = 30) using whole metagenome sequencing. Improving feed efficiency (FE) is important for a more sustainable livestock production. The variability for the efficiency of feed utilization in ruminants is partially controlled by the gastrointestinal microbiota. Modulating the microbiota composition can promote a more sustainable and efficient livestock. This study revealed that most efficient cows had larger relative abundance of Bacteroidetes (P = 0.041) and Prevotella (P = 0.003), while lower, but non-significant (P = 0.119), relative abundance of Firmicutes . Methanobacteria (P = 0.004) and Methanobrevibacter (P = 0.003) were also less abundant in the high-efficiency cows. A de novo metagenome assembly was carried out using de Bruijn graphs in MEGAHIT resulting in 496,375 contigs. An agnostic pre-selection of microbial contigs allowed high classification accuracy for FE and intake levels using hierarchical classification. These microbial contigs were also able to predict FE and intake levels with accuracy of 0.19 and 0.39, respectively, in an independent population (n = 31). Nonetheless, a larger potential accuracy up to 0.69 was foreseen in this study for datasets that allowed a larger statistical power. Enrichment analyses showed that genes within these contigs were mainly involved in fatty acids and cellulose degradation pathways. The findings indicated that there are differences between the microbiota compositions of high and low-efficiency animals both at the taxonomical and gene levels. These differences are even more evident in terms of intake levels. Some of these differences remain even between populations under different diets and environments, and can provide information on the feed utilization performance without information on the individual intake level.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36673-w</identifier><identifier>PMID: 30626904</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 45/43 ; 631/208/1348 ; 631/326/2565/2142 ; Accuracy ; Animal Feed ; Animal populations ; Animals ; Biodegradation ; Bovidae ; Cattle ; Cellulose ; Efficiency ; Euryarchaeota - growth &amp; development ; Fatty acids ; Feed conversion ; Feed efficiency ; Feeds ; Firmicutes - growth &amp; development ; Gastrointestinal Microbiome - genetics ; Gastrointestinal Microbiome - physiology ; Humanities and Social Sciences ; Information processing ; Livestock ; Livestock production ; Metagenome ; Methanobrevibacter - growth &amp; development ; Microbiota ; multidisciplinary ; Prevotella - growth &amp; development ; Relative abundance ; Rumen ; Rumen - microbiology ; Science ; Science (multidisciplinary) ; Sustainable production</subject><ispartof>Scientific reports, 2019-01, Vol.9 (1), p.11-11, Article 11</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-f30974761846a2a4213e238e9aba1c9ccfeea0ce0caa6073cee5b06f9b0c5293</citedby><cites>FETCH-LOGICAL-c577t-f30974761846a2a4213e238e9aba1c9ccfeea0ce0caa6073cee5b06f9b0c5293</cites><orcidid>0000-0001-6804-2002 ; 0000-0002-9106-4063 ; 0000-0002-7653-6632 ; 0000-0003-4277-5237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327033/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327033/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30626904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delgado, Beatriz</creatorcontrib><creatorcontrib>Bach, Alex</creatorcontrib><creatorcontrib>Guasch, Isabel</creatorcontrib><creatorcontrib>González, Carmen</creatorcontrib><creatorcontrib>Elcoso, Guillermo</creatorcontrib><creatorcontrib>Pryce, Jennie E.</creatorcontrib><creatorcontrib>Gonzalez-Recio, Oscar</creatorcontrib><title>Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The current research was carried out to determine the associations between the rumen microbiota and traits related with feed efficiency in a Holstein cattle population (n = 30) using whole metagenome sequencing. Improving feed efficiency (FE) is important for a more sustainable livestock production. The variability for the efficiency of feed utilization in ruminants is partially controlled by the gastrointestinal microbiota. Modulating the microbiota composition can promote a more sustainable and efficient livestock. This study revealed that most efficient cows had larger relative abundance of Bacteroidetes (P = 0.041) and Prevotella (P = 0.003), while lower, but non-significant (P = 0.119), relative abundance of Firmicutes . Methanobacteria (P = 0.004) and Methanobrevibacter (P = 0.003) were also less abundant in the high-efficiency cows. A de novo metagenome assembly was carried out using de Bruijn graphs in MEGAHIT resulting in 496,375 contigs. An agnostic pre-selection of microbial contigs allowed high classification accuracy for FE and intake levels using hierarchical classification. These microbial contigs were also able to predict FE and intake levels with accuracy of 0.19 and 0.39, respectively, in an independent population (n = 31). Nonetheless, a larger potential accuracy up to 0.69 was foreseen in this study for datasets that allowed a larger statistical power. Enrichment analyses showed that genes within these contigs were mainly involved in fatty acids and cellulose degradation pathways. The findings indicated that there are differences between the microbiota compositions of high and low-efficiency animals both at the taxonomical and gene levels. These differences are even more evident in terms of intake levels. Some of these differences remain even between populations under different diets and environments, and can provide information on the feed utilization performance without information on the individual intake level.</description><subject>45/23</subject><subject>45/43</subject><subject>631/208/1348</subject><subject>631/326/2565/2142</subject><subject>Accuracy</subject><subject>Animal Feed</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Biodegradation</subject><subject>Bovidae</subject><subject>Cattle</subject><subject>Cellulose</subject><subject>Efficiency</subject><subject>Euryarchaeota - growth &amp; development</subject><subject>Fatty acids</subject><subject>Feed conversion</subject><subject>Feed efficiency</subject><subject>Feeds</subject><subject>Firmicutes - growth &amp; development</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>Livestock</subject><subject>Livestock production</subject><subject>Metagenome</subject><subject>Methanobrevibacter - growth &amp; development</subject><subject>Microbiota</subject><subject>multidisciplinary</subject><subject>Prevotella - growth &amp; development</subject><subject>Relative abundance</subject><subject>Rumen</subject><subject>Rumen - microbiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sustainable production</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UctuFDEQtBCIRCE_kAOyxIXLgF_jGV-QUERCpEhcInG0er09GwePvdgzWe3f493NCw74YrerusrtIuSMs0-cyf5zUbw1fcN430itO9lsXpFjwVTbCCnE6xfnI3Jayh2rqxVGcfOWHEmmhTZMHZP08zYFpHkeMdIRJ1hhTCPSgr9njM7HFYUQ0qZQF6AUP2z3V3FJ1xmX3k27ckBcUhwG73zt2e5hHyf4hTTgPYZSK-pgmgK-I28GCAVPH_YTcnPx7eb8e3P94_Lq_Ot149qum5pBMtOpTvNeaRCgBJcoZI8GFsCdca5aAnPIHIBmnXSI7YLpwSyYq1PKE_LlILueFyMuHcYpQ7Dr7EfIW5vA27-R6G_tKt1bLUXHpKwCHx8Ecqo_USY7-uIwBIiY5mIF74zkWrU7rw__UO_SnGOdrrJ0q5UxmlWWOLBcTqVkHJ4ew5ndJWoPidqaqN0naje16f3LMZ5aHvOrBHkglArFFeZn7__I_gEe9q98</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Delgado, Beatriz</creator><creator>Bach, Alex</creator><creator>Guasch, Isabel</creator><creator>González, Carmen</creator><creator>Elcoso, Guillermo</creator><creator>Pryce, Jennie E.</creator><creator>Gonzalez-Recio, Oscar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6804-2002</orcidid><orcidid>https://orcid.org/0000-0002-9106-4063</orcidid><orcidid>https://orcid.org/0000-0002-7653-6632</orcidid><orcidid>https://orcid.org/0000-0003-4277-5237</orcidid></search><sort><creationdate>20190109</creationdate><title>Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle</title><author>Delgado, Beatriz ; Bach, Alex ; Guasch, Isabel ; González, Carmen ; Elcoso, Guillermo ; Pryce, Jennie E. ; Gonzalez-Recio, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-f30974761846a2a4213e238e9aba1c9ccfeea0ce0caa6073cee5b06f9b0c5293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45/23</topic><topic>45/43</topic><topic>631/208/1348</topic><topic>631/326/2565/2142</topic><topic>Accuracy</topic><topic>Animal Feed</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Biodegradation</topic><topic>Bovidae</topic><topic>Cattle</topic><topic>Cellulose</topic><topic>Efficiency</topic><topic>Euryarchaeota - growth &amp; development</topic><topic>Fatty acids</topic><topic>Feed conversion</topic><topic>Feed efficiency</topic><topic>Feeds</topic><topic>Firmicutes - growth &amp; development</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>Livestock</topic><topic>Livestock production</topic><topic>Metagenome</topic><topic>Methanobrevibacter - growth &amp; development</topic><topic>Microbiota</topic><topic>multidisciplinary</topic><topic>Prevotella - growth &amp; development</topic><topic>Relative abundance</topic><topic>Rumen</topic><topic>Rumen - microbiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado, Beatriz</creatorcontrib><creatorcontrib>Bach, Alex</creatorcontrib><creatorcontrib>Guasch, Isabel</creatorcontrib><creatorcontrib>González, Carmen</creatorcontrib><creatorcontrib>Elcoso, Guillermo</creatorcontrib><creatorcontrib>Pryce, Jennie E.</creatorcontrib><creatorcontrib>Gonzalez-Recio, Oscar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgado, Beatriz</au><au>Bach, Alex</au><au>Guasch, Isabel</au><au>González, Carmen</au><au>Elcoso, Guillermo</au><au>Pryce, Jennie E.</au><au>Gonzalez-Recio, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-01-09</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>11</spage><epage>11</epage><pages>11-11</pages><artnum>11</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The current research was carried out to determine the associations between the rumen microbiota and traits related with feed efficiency in a Holstein cattle population (n = 30) using whole metagenome sequencing. Improving feed efficiency (FE) is important for a more sustainable livestock production. The variability for the efficiency of feed utilization in ruminants is partially controlled by the gastrointestinal microbiota. Modulating the microbiota composition can promote a more sustainable and efficient livestock. This study revealed that most efficient cows had larger relative abundance of Bacteroidetes (P = 0.041) and Prevotella (P = 0.003), while lower, but non-significant (P = 0.119), relative abundance of Firmicutes . Methanobacteria (P = 0.004) and Methanobrevibacter (P = 0.003) were also less abundant in the high-efficiency cows. A de novo metagenome assembly was carried out using de Bruijn graphs in MEGAHIT resulting in 496,375 contigs. An agnostic pre-selection of microbial contigs allowed high classification accuracy for FE and intake levels using hierarchical classification. These microbial contigs were also able to predict FE and intake levels with accuracy of 0.19 and 0.39, respectively, in an independent population (n = 31). Nonetheless, a larger potential accuracy up to 0.69 was foreseen in this study for datasets that allowed a larger statistical power. Enrichment analyses showed that genes within these contigs were mainly involved in fatty acids and cellulose degradation pathways. The findings indicated that there are differences between the microbiota compositions of high and low-efficiency animals both at the taxonomical and gene levels. These differences are even more evident in terms of intake levels. Some of these differences remain even between populations under different diets and environments, and can provide information on the feed utilization performance without information on the individual intake level.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30626904</pmid><doi>10.1038/s41598-018-36673-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6804-2002</orcidid><orcidid>https://orcid.org/0000-0002-9106-4063</orcidid><orcidid>https://orcid.org/0000-0002-7653-6632</orcidid><orcidid>https://orcid.org/0000-0003-4277-5237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-01, Vol.9 (1), p.11-11, Article 11
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6327033
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 45/23
45/43
631/208/1348
631/326/2565/2142
Accuracy
Animal Feed
Animal populations
Animals
Biodegradation
Bovidae
Cattle
Cellulose
Efficiency
Euryarchaeota - growth & development
Fatty acids
Feed conversion
Feed efficiency
Feeds
Firmicutes - growth & development
Gastrointestinal Microbiome - genetics
Gastrointestinal Microbiome - physiology
Humanities and Social Sciences
Information processing
Livestock
Livestock production
Metagenome
Methanobrevibacter - growth & development
Microbiota
multidisciplinary
Prevotella - growth & development
Relative abundance
Rumen
Rumen - microbiology
Science
Science (multidisciplinary)
Sustainable production
title Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole%20rumen%20metagenome%20sequencing%20allows%20classifying%20and%20predicting%20feed%20efficiency%20and%20intake%20levels%20in%20cattle&rft.jtitle=Scientific%20reports&rft.au=Delgado,%20Beatriz&rft.date=2019-01-09&rft.volume=9&rft.issue=1&rft.spage=11&rft.epage=11&rft.pages=11-11&rft.artnum=11&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36673-w&rft_dat=%3Cproquest_pubme%3E2179316459%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165649960&rft_id=info:pmid/30626904&rfr_iscdi=true