Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity

The majority of cytochrome P450 enzymes (CYPs) predominantly operate as monooxygenases, but recently a class of P450 enzymes was discovered, that can act as peroxygenases (CYP152). These enzymes convert fatty acids through oxidative decarboxylation, yielding terminal alkenes, and through α- and β-hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2019-01, Vol.9 (1), p.565-577
Hauptverfasser: Pickl, Mathias, Kurakin, Sara, Cantú Reinhard, Fabián G, Schmid, Philipp, Pöcheim, Alexander, Winkler, Christoph K, Kroutil, Wolfgang, de Visser, Sam P, Faber, Kurt
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 1
container_start_page 565
container_title ACS catalysis
container_volume 9
creator Pickl, Mathias
Kurakin, Sara
Cantú Reinhard, Fabián G
Schmid, Philipp
Pöcheim, Alexander
Winkler, Christoph K
Kroutil, Wolfgang
de Visser, Sam P
Faber, Kurt
description The majority of cytochrome P450 enzymes (CYPs) predominantly operate as monooxygenases, but recently a class of P450 enzymes was discovered, that can act as peroxygenases (CYP152). These enzymes convert fatty acids through oxidative decarboxylation, yielding terminal alkenes, and through α- and β-hydroxylation to yield hydroxy-fatty acids. Bioderived olefins may serve as biofuels, and hence understanding the mechanism and substrate scope of this class of enzymes is important. In this work, we report on the substrate scope and catalytic promiscuity of CYP OleTJE and two of its orthologues from the CYP152 family, utilizing α-monosubstituted branched carboxylic acids. We identify α,β-desaturation as an unexpected dominant pathway for CYP OleTJE with 2-methylbutyric acid. To rationalize product distributions arising from α/β-hydroxylation, oxidative decarboxylation, and desaturation depending on the substrate’s structure and binding pattern, a computational study was performed based on an active site complex of CYP OleTJE containing the heme cofactor in the substrate binding pocket and 2-methylbutyric acid as substrate. It is shown that substrate positioning determines the accessibility of the oxidizing species (Compound I) to the substrate and hence the regio- and chemoselectivity of the reaction. Furthermore, the results show that, for 2-methylbutyric acid, α,β-desaturation is favorable because of a rate-determining α-hydrogen atom abstraction, which cannot proceed to decarboxylation. Moreover, substrate hydroxylation is energetically impeded due to the tight shape and size of the substrate binding pocket.
doi_str_mv 10.1021/acscatal.8b03733
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6323616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179354809</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-d865a7e4b3a536b13972ef57844b1f71ace60edc4a8530991a83bfd53b7904013</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EolXpnRPykQNb7IwdJxekaksBqVWrQg-crIkzab3KJovtrJp_j9Fuq_bAHDyW5n1vLD_G3ktxIkUhP6OLDhP2J1UjwAC8YoeF1HqhFejXz-4H7DjGlcildFkZ8ZYdgCjBSKMO2eqS3D0OPibv-M80tZ4iHzt-jinN_NT5Nh_JbzH5ceDNzJe_r6Uu-DWF8WG-owFjBm5oS9jz24EeNuQStfyMIqYp5OmO92l-x9502Ec63vcjdnv-9dfy--Li6tuP5enFAhVAWrRVqdGQagA1lI2E2hTUaVMp1cjOSHRUCmqdwkqDqGuJFTRdq6ExtVBCwhH7svPdTM06C2lIAXu7CX6NYbYjevtyMvh7ezdubQkFlLLMBh_3BmH8M1FMdu2jo77HgcYp2kKaGrSqRJ2lYid1YYwxUPe0Rgr7LyX7mJLdp5SRD8-f9wQ8ZpIFn3aCjNrVOIUh_9b__f4CAtifhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179354809</pqid></control><display><type>article</type><title>Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity</title><source>American Chemical Society Journals</source><creator>Pickl, Mathias ; Kurakin, Sara ; Cantú Reinhard, Fabián G ; Schmid, Philipp ; Pöcheim, Alexander ; Winkler, Christoph K ; Kroutil, Wolfgang ; de Visser, Sam P ; Faber, Kurt</creator><creatorcontrib>Pickl, Mathias ; Kurakin, Sara ; Cantú Reinhard, Fabián G ; Schmid, Philipp ; Pöcheim, Alexander ; Winkler, Christoph K ; Kroutil, Wolfgang ; de Visser, Sam P ; Faber, Kurt</creatorcontrib><description>The majority of cytochrome P450 enzymes (CYPs) predominantly operate as monooxygenases, but recently a class of P450 enzymes was discovered, that can act as peroxygenases (CYP152). These enzymes convert fatty acids through oxidative decarboxylation, yielding terminal alkenes, and through α- and β-hydroxylation to yield hydroxy-fatty acids. Bioderived olefins may serve as biofuels, and hence understanding the mechanism and substrate scope of this class of enzymes is important. In this work, we report on the substrate scope and catalytic promiscuity of CYP OleTJE and two of its orthologues from the CYP152 family, utilizing α-monosubstituted branched carboxylic acids. We identify α,β-desaturation as an unexpected dominant pathway for CYP OleTJE with 2-methylbutyric acid. To rationalize product distributions arising from α/β-hydroxylation, oxidative decarboxylation, and desaturation depending on the substrate’s structure and binding pattern, a computational study was performed based on an active site complex of CYP OleTJE containing the heme cofactor in the substrate binding pocket and 2-methylbutyric acid as substrate. It is shown that substrate positioning determines the accessibility of the oxidizing species (Compound I) to the substrate and hence the regio- and chemoselectivity of the reaction. Furthermore, the results show that, for 2-methylbutyric acid, α,β-desaturation is favorable because of a rate-determining α-hydrogen atom abstraction, which cannot proceed to decarboxylation. Moreover, substrate hydroxylation is energetically impeded due to the tight shape and size of the substrate binding pocket.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.8b03733</identifier><identifier>PMID: 30637174</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS catalysis, 2019-01, Vol.9 (1), p.565-577</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-d865a7e4b3a536b13972ef57844b1f71ace60edc4a8530991a83bfd53b7904013</citedby><cites>FETCH-LOGICAL-a433t-d865a7e4b3a536b13972ef57844b1f71ace60edc4a8530991a83bfd53b7904013</cites><orcidid>0000-0003-3068-9817 ; 0000-0002-2620-8788 ; 0000-0003-0497-5430 ; 0000-0002-2151-6394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.8b03733$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.8b03733$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30637174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pickl, Mathias</creatorcontrib><creatorcontrib>Kurakin, Sara</creatorcontrib><creatorcontrib>Cantú Reinhard, Fabián G</creatorcontrib><creatorcontrib>Schmid, Philipp</creatorcontrib><creatorcontrib>Pöcheim, Alexander</creatorcontrib><creatorcontrib>Winkler, Christoph K</creatorcontrib><creatorcontrib>Kroutil, Wolfgang</creatorcontrib><creatorcontrib>de Visser, Sam P</creatorcontrib><creatorcontrib>Faber, Kurt</creatorcontrib><title>Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The majority of cytochrome P450 enzymes (CYPs) predominantly operate as monooxygenases, but recently a class of P450 enzymes was discovered, that can act as peroxygenases (CYP152). These enzymes convert fatty acids through oxidative decarboxylation, yielding terminal alkenes, and through α- and β-hydroxylation to yield hydroxy-fatty acids. Bioderived olefins may serve as biofuels, and hence understanding the mechanism and substrate scope of this class of enzymes is important. In this work, we report on the substrate scope and catalytic promiscuity of CYP OleTJE and two of its orthologues from the CYP152 family, utilizing α-monosubstituted branched carboxylic acids. We identify α,β-desaturation as an unexpected dominant pathway for CYP OleTJE with 2-methylbutyric acid. To rationalize product distributions arising from α/β-hydroxylation, oxidative decarboxylation, and desaturation depending on the substrate’s structure and binding pattern, a computational study was performed based on an active site complex of CYP OleTJE containing the heme cofactor in the substrate binding pocket and 2-methylbutyric acid as substrate. It is shown that substrate positioning determines the accessibility of the oxidizing species (Compound I) to the substrate and hence the regio- and chemoselectivity of the reaction. Furthermore, the results show that, for 2-methylbutyric acid, α,β-desaturation is favorable because of a rate-determining α-hydrogen atom abstraction, which cannot proceed to decarboxylation. Moreover, substrate hydroxylation is energetically impeded due to the tight shape and size of the substrate binding pocket.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EolXpnRPykQNb7IwdJxekaksBqVWrQg-crIkzab3KJovtrJp_j9Fuq_bAHDyW5n1vLD_G3ktxIkUhP6OLDhP2J1UjwAC8YoeF1HqhFejXz-4H7DjGlcildFkZ8ZYdgCjBSKMO2eqS3D0OPibv-M80tZ4iHzt-jinN_NT5Nh_JbzH5ceDNzJe_r6Uu-DWF8WG-owFjBm5oS9jz24EeNuQStfyMIqYp5OmO92l-x9502Ec63vcjdnv-9dfy--Li6tuP5enFAhVAWrRVqdGQagA1lI2E2hTUaVMp1cjOSHRUCmqdwkqDqGuJFTRdq6ExtVBCwhH7svPdTM06C2lIAXu7CX6NYbYjevtyMvh7ezdubQkFlLLMBh_3BmH8M1FMdu2jo77HgcYp2kKaGrSqRJ2lYid1YYwxUPe0Rgr7LyX7mJLdp5SRD8-f9wQ8ZpIFn3aCjNrVOIUh_9b__f4CAtifhg</recordid><startdate>20190104</startdate><enddate>20190104</enddate><creator>Pickl, Mathias</creator><creator>Kurakin, Sara</creator><creator>Cantú Reinhard, Fabián G</creator><creator>Schmid, Philipp</creator><creator>Pöcheim, Alexander</creator><creator>Winkler, Christoph K</creator><creator>Kroutil, Wolfgang</creator><creator>de Visser, Sam P</creator><creator>Faber, Kurt</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3068-9817</orcidid><orcidid>https://orcid.org/0000-0002-2620-8788</orcidid><orcidid>https://orcid.org/0000-0003-0497-5430</orcidid><orcidid>https://orcid.org/0000-0002-2151-6394</orcidid></search><sort><creationdate>20190104</creationdate><title>Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity</title><author>Pickl, Mathias ; Kurakin, Sara ; Cantú Reinhard, Fabián G ; Schmid, Philipp ; Pöcheim, Alexander ; Winkler, Christoph K ; Kroutil, Wolfgang ; de Visser, Sam P ; Faber, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-d865a7e4b3a536b13972ef57844b1f71ace60edc4a8530991a83bfd53b7904013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pickl, Mathias</creatorcontrib><creatorcontrib>Kurakin, Sara</creatorcontrib><creatorcontrib>Cantú Reinhard, Fabián G</creatorcontrib><creatorcontrib>Schmid, Philipp</creatorcontrib><creatorcontrib>Pöcheim, Alexander</creatorcontrib><creatorcontrib>Winkler, Christoph K</creatorcontrib><creatorcontrib>Kroutil, Wolfgang</creatorcontrib><creatorcontrib>de Visser, Sam P</creatorcontrib><creatorcontrib>Faber, Kurt</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pickl, Mathias</au><au>Kurakin, Sara</au><au>Cantú Reinhard, Fabián G</au><au>Schmid, Philipp</au><au>Pöcheim, Alexander</au><au>Winkler, Christoph K</au><au>Kroutil, Wolfgang</au><au>de Visser, Sam P</au><au>Faber, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2019-01-04</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>565</spage><epage>577</epage><pages>565-577</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The majority of cytochrome P450 enzymes (CYPs) predominantly operate as monooxygenases, but recently a class of P450 enzymes was discovered, that can act as peroxygenases (CYP152). These enzymes convert fatty acids through oxidative decarboxylation, yielding terminal alkenes, and through α- and β-hydroxylation to yield hydroxy-fatty acids. Bioderived olefins may serve as biofuels, and hence understanding the mechanism and substrate scope of this class of enzymes is important. In this work, we report on the substrate scope and catalytic promiscuity of CYP OleTJE and two of its orthologues from the CYP152 family, utilizing α-monosubstituted branched carboxylic acids. We identify α,β-desaturation as an unexpected dominant pathway for CYP OleTJE with 2-methylbutyric acid. To rationalize product distributions arising from α/β-hydroxylation, oxidative decarboxylation, and desaturation depending on the substrate’s structure and binding pattern, a computational study was performed based on an active site complex of CYP OleTJE containing the heme cofactor in the substrate binding pocket and 2-methylbutyric acid as substrate. It is shown that substrate positioning determines the accessibility of the oxidizing species (Compound I) to the substrate and hence the regio- and chemoselectivity of the reaction. Furthermore, the results show that, for 2-methylbutyric acid, α,β-desaturation is favorable because of a rate-determining α-hydrogen atom abstraction, which cannot proceed to decarboxylation. Moreover, substrate hydroxylation is energetically impeded due to the tight shape and size of the substrate binding pocket.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30637174</pmid><doi>10.1021/acscatal.8b03733</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3068-9817</orcidid><orcidid>https://orcid.org/0000-0002-2620-8788</orcidid><orcidid>https://orcid.org/0000-0003-0497-5430</orcidid><orcidid>https://orcid.org/0000-0002-2151-6394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2019-01, Vol.9 (1), p.565-577
issn 2155-5435
2155-5435
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6323616
source American Chemical Society Journals
title Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Studies%20of%20Fatty%20Acid%20Activation%20by%20CYP152%20Peroxygenases%20Reveal%20Unexpected%20Desaturase%20Activity&rft.jtitle=ACS%20catalysis&rft.au=Pickl,%20Mathias&rft.date=2019-01-04&rft.volume=9&rft.issue=1&rft.spage=565&rft.epage=577&rft.pages=565-577&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.8b03733&rft_dat=%3Cproquest_pubme%3E2179354809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179354809&rft_id=info:pmid/30637174&rfr_iscdi=true